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Abstract
Background: Using an understudied taxon (Hymenoptera, Formicidae) found on a tropical island
(Mauritius) where native flora and fauna have been threatened by 400 years of habitat modification
and introduced species, we tested whether estimated incidences of diversity and complementarity
were similar when measured by standard morphological alpha-taxonomy or phylogenetic diversity
(PD) based on a standardized mitochondrial barcode and corroborating nuclear marker.

Results: We found that costs related to site loss (considered loss of evolutionary history
measured as loss of barcode PD) were not significantly different from predictions made either a)
using standard morphology-based taxonomy, or b) measured using a nuclear marker. Integrating
morphology and barcode results permitted us to identify a case of initially morphologically-cryptic
variation as a new and endemic candidate species. However, barcode estimates of the relative
importance of each site or network of sites were dramatically affected when the species in question
was known to be indigenous or introduced.

Conclusion: This study goes beyond a mere demonstration of the rapid gains possible for diversity
assessment using a standardized DNA barcode. Contextualization of these gains with ecological
and natural history information is necessary to calibrate this wealth of standardized information.
Without such an integrative approach, critical opportunities to advance knowledge will be missed.

Background
Life on our planet is disappearing at the highest recorded
rate outside of accepted mass extinction events [1,2]. This
crisis is exacerbated in insular habitats, where endemic
taxa are exposed not only to the competing effects of hab-
itat destruction, fragmentation and degradation, but also
to biological invasions that replace native species [3]. The
resulting problems include the need to triage [4] small
resources over large areas and analyze great taxonomic
diversity, as well as respond quickly to, vanishing oppor-
tunities for action.

An overwhelming proportion of tropical biodiversity is
comprised of terrestrial arthropods, primarily insects. Spa-
tial turnover in insect biodiversity occurs on a very small
scale, comprising a data-rich and fine-grained source of
biodiversity information. However, the paucity of trained
arthropod taxonomists and the large number of species
remaining to be described means that opportunities to
utilize this information source are often missed. The pres-
ence of introduced and invasive species further compli-
cates the study of arthropods. These newer arrivals make it
difficult to differentiate newly introduced species from
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rare or unknown endemics. Further challenges include an
abundance of cryptic species and inadequately-funded
taxonomic research programs [5-7]. A database of stand-
ardized DNA sequences will empower researchers and
land managers to predict and prevent the arrival of new
species. Such planning could be used to avert potentially
catastrophic effects [e.g. ecological meltdown - [8]].

Translocated species (i.e. invaders) are arriving at ever
faster rates due to anthropogenic influence [9] and cli-
mate change [10], and biodiversity losses continue to
accelerate [2]. Given these trends, can rates of species dis-
covery and the enumeration of biodiversity keep pace? If
limited to strictly traditional methods, science is almost
certainly guaranteed to fall far behind. Taxonomy is an
inherently difficult discipline requiring a lifetime of train-
ing. Established and formalized taxonomic frameworks
exist only for relatively large, highly visible, and/or eco-
nomically important vertebrates and arthropods. Too few
taxonomists are available to survey the biodiversity of iso-
lated or understudied areas, or to analyze the vast majority
of terrestrial arthropods.

Taxonomists are acutely aware of these limitations. Many
are now looking to use standardized DNA markers as
DNA barcodes to address this problem [11,12]. Here, a
gene (or genes) is collected into a publicly accessible
genomics library using standardized methodologies.
These involve comparing the barcode to sequence data
from known species, as well as ancillary meta-data such as
geography, observations and photographs. A regional
query of such a database, based on the sequencing of a
single specimen or environmental genomics using pyrose-
quencing technology [13], would allow researchers to
compare diversity, uniqueness and complementarity at a
far more rapid rate than morphological taxonomy alone.

Here we test the utility of a DNA barcoding approach to
assess the diversity of understudied ant taxa on the tropi-
cal island of Mauritius. The flora and fauna of Mauritius
have experienced 400 years of documented impacts from
habitat modification and introduced species. We used
1111 specimens collected from 10 sites in 2005 to test
whether DNA barcoding and traditional morphological
taxonomic analyses would affirm the same units of diver-
sity within and between these 10 sites. In addition, we
examined whether rates of diversity and complementarity
differed between standard morphological alpha-taxon-
omy or DNA barcoding. We tested whether the cost (here
considered the loss of evolutionary history as measured
by loss of barcode phylogenetic diversity - PD [14]) of a
particular locality predicted the same relative importance
of a locality. We further tested whether predictions for
these estimates of evolutionary history were different
between a mtDNA barcode region and a nuclear marker

(28S, D2). We tested whether the relative importance of
each site, or network of sites, (measured using the barcode
alone), was affected by whether the specimen we had col-
lected was known or presumed to be a native versus an
introduced species. We do not attempt to provide a review
of the criticisms of the efficacy of mitochondrial DNA bar-
coding [15-21], rather we highlight the importance of
integrating ecological and historical information into bio-
diversity analyses that are based on DNA barcoding.

We conclude that merging DNA barcoding into diversity
assessments allows researchers great opportunities to
increase survey capacity. However, our study underscores
the importance of tempering barcode analyses with natu-
ral history information, which help calibrate and improve
the utility of this technique.

Results
Barcode Identification
Fifty-one species were recorded from 165 collecting events
across 10 localities (Figure 1). Specimens were identified
to genus in Madagascar, and to morphospecies in San
Francisco (USA) independent of barcoding. The species
include a number of new records for the island [22].

Barcode divergences (2%) used as a filter to compare to
morphologically named units agreed in all cases except
two (Figure 2). These two morphologically named taxa
(Hypoponera johannae and Pristomyrmex browni) each con-
tained much more than 2% sequence divergence (Table
1). Upon re-examination of the specimens we discovered
sufficient morphological variation in the workers to jus-
tify classifying these specimens as candidate species. In
addition, barcoding helped detect specimens that had
been mislabeled or placed under the wrong species epi-
thet. When sequences greater than 400 bp were compared,
we found no significant departures from neutrality using
Tajima's D (D = 1.10750, p > 0.10).

In short, barcoding identified the same units of diversity
(species) as were flagged using morphology (after deeply
barcode divergent morphospecies were re-examined and
re-allocated to new provisional species groups).

Genetic Analyses and Divergent Intraspecific Lineages
Both rDNA markers used here (ITS1 and 28S) can help
interpret morphologically cryptic and geographically sym-
patric deep mtDNA splits. As independent genetic mark-
ers, the correlated splitting of rDNA and mtDNA within a
taxonomically ascribed single unit supports the hypothe-
sis of morphologically cryptic species, while the lack of
such a split can suggest mtDNA variation within a species,
due to differences in rates of lineage sorting between mito-
chondrial and nuclear markers, hybridization between
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Neighbor-joining tree of K2P distances for each of the 51 species of ants that were barcoded from MauritiusFigure 1
Neighbor-joining tree of K2P distances for each of the 51 species of ants that were barcoded from Mauritius. 
Only one representative of each species is shown. Branch tips are labeled as follows: species name (or provisional name when 
a formalized taxonomy has not been completed)|number of specimens sequenced for CO1|mean intraspecific divergence 
within the CO1 barcode region. Branch tips labeled in red are known introduced, or tramp species.

Technomyrmex pallipes|7|0.00%
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Strumigenys rogeri|1|
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Paratrechina vividula|40|0.094%
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Pheidole megacephala|53|0.047%

Crematogaster sewellii dentata|25|1.214%

Solenopsis mameti|141|0.118%

Pheidole MU02|13|0.01%

Pheidole MU01|53|0.88%

Cerapachys biroi|9|0.114%
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Hypoponera MU01|6|0.00%



Frontiers in Zoology 2009, 6:31 http://www.frontiersinzoology.com/content/6/1/31
sister taxa or the presence of nuclear translocations of
mitochondrial DNA [23-27].

Pristomyrmex
One Pristomyrmex morphospecies was collected from a
critically threatened site (Le Pouce, [28]) through leaf-lit-
ter sampling and so represents an unknown number of
colonies. We found deep divisions (15% CO1- Table 1)
within this morphospecies, suggesting either that it con-
tained multiple cryptic species, or that Le Pouce is a con-
temporary refuge for two apparently divergent mtDNA
lineages. We tested whether these deep lineages were sup-
ported by nuclear markers. With 28S D2 (expected to be

variable if two species), we found no variation. However,
ITS1, expected to be hypervariable if two species, con-
tained two clusters supporting CO1. All Pristomyrmex
specimens tested positive for Wolbachia, and each provi-
sional species harbored different species or numbers of
infecting strains of Wolbachia. We hypothesize that these
Pristomyrmex specimens are two recent or incipient species
that have not yet accrued variation in the D2 region of
28S.

Paratrechina
rDNA variation within both P. vividula and P. bourbonica
is not commensurate with barcode divergence or geogra-
phy. An insertion (at ~100 bp) within the 28S D2 region
of several sympatric P. vividula specimens may be repre-
sentative of an rDNA pseudogene - or paralog. Paralogous
sequences are a problem to specimen identification and
comparison using either mtDNA [29], or rDNA [30,31].
Indeed, it can be difficult to identify rDNA pseudogenes.
While protein coding mitochondrial genes can be checked
for stop codons or translational errors, the non-coding
regions of rDNA cannot. While a Wolbachia infection may
explain the lack of mitochondrial variation within cases
where there is apparent nuclear variation [32], we found
no evidence of Wolbachia in any tested Paratrechina (Addi-
tional File 1). Since P. vividula is an introduced species, an
alternative explanation for the apparently sympatric
rDNA variation may lie in the fact that although the ana-
lysed P. vividula specimens are now sympatric, they may
have originated from multiple founding populations. Fur-
ther sampling is required to differentiate between the
competing hypotheses of numt, paralogous and multiple
founding populations as the source for this rDNA varia-
tion.

Diversity Estimates
Estimates of diversity (morphospecies richness, phyloge-
netic diversity [PD - sensu [14]] and barcode diversity
([essentially MOTU as in - [33]]]) were calculated for spec-
imens from each of the 10 sites (Figure 3 &4). Using 1111
specimens (and all sequence lengths - i.e. not restricting

Table 1: Barcode divergence statistics (Minimum, Average and Maximum sequence divergence for CO1 sequences greater than 419 
bp in length) for two apparent cases of morphologically cryptic variation.

Original Taxonomic Designation Min Average Max Provisional species following barcoding

Hypoponera johannae 0 18.571 23.825 Hypoponera johannae
Hypoponera sp. Mau-01
Hypoponera sp. Mau-02
Hypoponera sp. Mau-03
Hypoponera sp. Mau-03

Pristomyrmex browni 0 14.175 15.751 Pristomyrmex browni
Pristomyrmex sp. Mau-01
Pristomyrmex sp. Mau-02

Pairwise comparison of shared diversity between sites as measured by taxonomic richness (below diagonal) and molecular operational taxonomic units (or MOTU) using a 2% threshold (above the diagonal)Figure 2
Pairwise comparison of shared diversity between 
sites as measured by taxonomic richness (below diag-
onal) and molecular operational taxonomic units (or 
MOTU) using a 2% threshold (above the diagonal).
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Aigrettes 1 - 2 1 8 1 0 3 0 3 2

Basin Blanc 480 2 - 2 3 3 2 2 0 3 3

Black River 750 1 2 - 2 3 3 3 0 3 4

Brise 80-200 8 3 2 - 3 6 2 0 3 2

Calebasses 600 1 3 3 3 - 3 2 0 2 3

Camizard 375 0 2 3 6 3 - 0 0 3 2

Cocotte 700 3 2 3 2 2 0 - 0 3 5

Esny 1 0 0 0 0 0 0 0 - 0 0

Pieter Both 770 3 3 3 3 2 3 3 0 - 4

Pouce 650-750 2 3 4 2 3 2 5 0 4 -

Shared Morphospecies below diagonal

Shared 2% MOTU above diagonal
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analysis to the barcode convention of a minimum of 500
bp)) we found that the three most diverse sites, in
descending order, were Brise, Le Pouce and Aigrettes.
When barcode data were used in a PD approach to exam-
ine rarefaction (Figure 3) it became apparent that these
three sites alone harbor nearly 90% of the total diversity
collected on the island. The three least diverse sites were
Pieter Both, Calabesses and Camizard, which contained
primarily introduced species plus a low number of native
species. Both MOTU and the morphospecies approach
yielded almost identical estimates of complementarity for
all ten sites (Figure 4).

Comparisons of diversity between localities were not
altered by reducing the amplicon size or use of alternate
genetic marker (Figure 4a). When barcode estimates of
diversity (PD) were calculated using a truncated sequence
length (130 bp), commonly produced by pyrosequencing
technology in surveys of environmental metagenomics
[13], there was no effect on between-site patterns
(although because the total branch lengths in the tree are
reduced, the total PD values are as well). Similarly, when
a smaller number of specimens were compared using D2,
the between-site patterns of diversity remained
unchanged (Figure 4).

However, comparing between-site diversity using a
restricted set of specimens that excluded known intro-
duced species altered the site ranking. The three most
diverse sites remained the same, but were ranked in a dif-
ferent order. By this measure, Le Pouce, an area with many
endemic species relative to introduced species, was most
diverse.

Discussion
In the hyperdiverse ant fauna of Madagascar, and the rel-
atively de-pauperate fauna of sub-arctic Canada, we have
demonstrated [33,34] that DNA barcoding can accelerate
current inventory methods and rapidly respond to press-
ing biodiversity needs. More specifically, this technique
excels in the assessment of richness and turnover across
landscapes. The initial Malagasy analysis involved a com-
paratively small number of sites (4) and specimens (268).
The current study is larger in scale, including 10 sites and
more than 1000 sequenced specimens (from collections
of thousands of specimens from 165 collections). Even
using an approach based on capillary sequencing (one
specimen - one extraction - one sequence), DNA barcod-
ing accelerates, and makes transparent and reproducible,
our ability to estimate diversity and complementarity
compared to morphology alone.

Complement of diversity across sitesFigure 3
Complement of diversity across sites. Diversity (measured as percent Phylogenetic Diversity (PD)) as a function of pair-
wise comparisons across sites. Two sites (Brise and Le Pouce) contain nearly 80% of the genetic diversity sampled, while three 
sites (Brise, Le Pouce and Aigrettes) will include 88% of the total genetic diversity.
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A. Diversity (PD) represented within each site when the entire dataset is utilized (black bars) and when tramp species are not included (yellow bars)Figure 4
A. Diversity (PD) represented within each site when the entire dataset is utilized (black bars) and when tramp 
species are not included (yellow bars). The rank importance of the three most diverse sites changes dramatically when 
known introduced species are excluded. B. The same analysis as in A except completed on a 135 bp tiny-barcode fragment 
from the extreme 5' end of the barcode region. Absolute values change, but the rank importance of each site and the effect of 
knowing whether species are native or tramp remain the same. This is the fragment size originally produced by pyrosequencing 
technology, suggesting that environmental barcode metagenomics of this hyperdiverse taxa would yield predictions equivalent 
to the sequencing technology used here (one sequence: one specimen).
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We found that barcode-based diversity estimates of PD
were slightly but not significantly more dispersed than
taxa-based (morphospecies) estimates. Furthermore, both
the PD approach using barcodes and analyses based on
morphology suggested that the same areas deserved pro-
tection. Unlike Forest et al., [35] who found that genetic
and morphological measures of diversity were biased in
different directions, our results suggest that identifying
sites deserving protection based on a survey of barcode
diversity yields the same results as would slower-to-gener-
ate morphological estimates. All methodologies agree that
diversity is unevenly distributed throughout the ten study
sites.

When introduced ants were excluded from the analyses,
the diversity ranking changed. Localities judged to contain
the most barcode diversity were affected by excluding spe-
cies known to have been introduced species. For this rea-
son, we place a high degree of importance on the
biological, or natural history information associated with
each specimen. Without this added information, genetic
assessments of diversity can prioritize areas with artifi-
cially high diversity (due to introduced species) over areas
with indigenous species that are fewer in number.

PD prediction-based trees built using a smaller amplicon
(as might be used/produced in an environmental metage-
nomics survey) were not different from predictions using
full length sequences (Figure 4b). This suggests that an
environmental metagenomics approach, drawing on a ref-
erence library of full-length DNA barcodes, will provide
rapid and information-rich estimates to triage conserva-
tion decisions.

Where tested, PD predictions of the barcode region were
supported by the analysis of a non-mitochondrial marker.
Not every barcoded specimen had an amplified nuclear
marker, but, for those that did, patterns of within- and
between- site diversity were the same whether obtained
using morphospecies or barcode data (Figure 4a).

Identification and Cryptic Diversity
Pristomyrmex browni specimens from Le Pouce were found
to contain deep genetic divisions (15% CO1, 2 insertions
in ITS1) while no differences were found within the D2
region of 28S (Table 1). We judged that these two genetic
lineages were likely to be two provisional species living
sympatrically, and that the nuclear marker 28S has had
insufficient time to differentiate within the more con-
served nuclear genome. In addition, genetically divergent
strains of Wolbachia were found in specimens from each
provisional species of ant. While related Wolbachia have
been shown to infect related hosts, this association has
not been demonstrated to extend to the species level [36].
As our analysis of Wolbachia infection is limited to the sin-

gle wsp gene, and not the multi-locus MLST protocol [37],
this result should be interpreted cautiously. However, fur-
ther work may indicate that these provisional Pristo-
myrmex species represent a case where Wolbachia have
spread with their host through co-divergence or introgres-
sion. The Le Pouce Pristomyrmex (originally identified as P.
browni but discovered to be highly divergent using CO1
and other nuclear markers) provide an example of how
integrating a standardized molecular marker into speci-
men surveillance can be more efficient than rapid provi-
sional morphological identifications alone.

Diversity Estimates
The island of Mauritius was originally entirely covered by
dense forest. However, most forests have been logged
since human colonization approximately 400 years ago.
The forest patches that remain are surrounded and infil-
trated by numerous introduced animal and plant species.

The known native ant fauna of Mauritius currently
includes 18 native species, 9 of which are endemic to the
island [22]. All surveys to date indicate endemic ants are
confined to upland forest on mountaintops. These
endemics could be the only remaining examples of a
much richer endemic fauna that disappeared with the
destruction of the lowland forest. The recent discovery of
a new genus record on Le Pouce [22] strongly suggests that
even more species await discovery on the island.

Le Pouce is an apparent sanctuary of taxonomically pecu-
liar endemic ant species [22]. Of the ten sites surveyed
here, it is one of the two most genetically diverse [PD -
sensu [14]] on the island (Figure 4). When tramp species
were included in the analysis, we found that the most PD
diverse site is Brise, which contained both a large comple-
ment of introduced species and also a relatively large
number of native and endemic species. Ranking sites by
genetic diversity, including and excluding introduced spe-
cies, suggests that Le Pouce and Brise warrant the greatest
degree of conservation. Only 2 MOTU or morphospecies
are common to both sites. Brise may be farther along the
invasion progression that threatens native populations.
Because Le Pouce populations are located at higher eleva-
tions (700-800 m versus 200 m for Brice) they may be less
susceptible to invasion from introduced species. Conser-
vation efforts should be directed at protecting both
remaining populations while they are still healthy.

The ability to estimate the genetic diversity of a site or
series of locations will likely become standard practice
when eukaryotic environmental genomics becomes more
commonplace and affordable. Accordingly, we tested
whether our conclusions were altered by reducing the
sequence comparison from full length barcode region to
the truncated sequence length originally produced by
Page 7 of 12
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pyrosequencing technology. This 'in silico' test region cor-
responds to the same small region used previously to test
the effect of a minimalist barcode on species identifica-
tion [38,39].

This work adds to the growing body literature demonstrat-
ing that PD in general provides a unique and important
measure of biological diversity [40], and further that PD
estimates based on standardized DNA barcodes will pro-
vide a critical scaffold for comparing those estimates
between taxa and sites [34].

Invasions
"Obviously unless something is done soon to stem the invasion
of exotic species, the indigenous forests of Mauritius will face
extinction." [[41] - p. 161.]

Used as a standard first-pass approach, DNA barcodes will
permit genetic estimates of diversity to be applied in a
range of biodiversity and conservation projects. Barcoding
permits much faster estimates of diversity and comple-
mentarity, and is generated in a fashion that permits easier
comparisons between research programs and taxa. Our
work demonstrates that using a PD approach for these
standardized sequences generates measures of diversity
equivalent to morphological estimates. At the same time,
it permits researchers to make hypotheses regarding
whether divergent/discontinuous barcode diversity is
equivalent to a unique species. Furthermore, our work
demonstrates the importance of knowing the organism.
We find that unless the introduced or native status of spec-
imens is known, an exclusively genetic approach to diver-
sity and site protection may be biased towards sites that
have higher rates of established introduced species rather
than higher rates of native diversity.

Conclusion
Ant diversity is known to be very sensitive to environmen-
tal variables such as the presence of leaf-litter and soil type
[42], and to change over small spatial scales [43,44]. This
combination could provide information-rich estimates of
biodiversity [45], endemism, and population isolation
and viability. However, species-level insect identification
can be notoriously difficult [46,47], dependent on specific
life-history stages for positive identification [48], compli-
cated by numerous synonymies [49], and likely overlooks
many cryptic species [25-27]. We have shown here that
integrating a first-pass [50] CO1 DNA barcode approach
will permit far more rapid estimates of diversity and com-
plementarity than morphological analysis alone. These
predictions were resilient to length of amplicon size and
not significantly different from PD estimates using a
nuclear marker. Critically, the information was best inter-
preted when knowledge of the natural history of the ani-

mal was overlaid onto the patterns of genetic diversity
(e.g. the inclusion or exclusion of known tramp species
can affect the ranking of sites for conservation). Integrat-
ing DNA barcoding in a collaborative effort to rank sites
rapidly based on diversity will yield results with high dis-
criminatory power, transparency and reproducibility to
the benefit of science and conservation.

Methods
Collection
This work is based on ant inventories in Mauritius con-
ducted from 25 May-31 May, 2005. During that period,
one of us (BLF) and a team of four experienced Malagasy
ant collectors visited ten sites: Le Pouce Mt., Pieter Both
Mt., and Calebasses Mt. in the Moka Range; Camizard Mt.,
and Brise Mt. in the Bambous Range; and Basin Blanc, Ile
aux Aigrettes, Point D'Esny, Cocotte Mt., and Petite Riv-
ière Noire Mt. Ants were collected using general hand-
search techniques and leaf litter extraction.

Molecular
Total genomic DNA extracts were prepared from small
pieces (≤ 1 mm) of tissue using the NucleoSpin® 96 Tissue
kit (Macherey-Nagel Duren, Germany) following the
manufacturer's protocols. Extracts were resuspended in 30
μl of dH2O, and a 650 base-pair (bp) region near the 5'
terminus of the CO1 gene was amplified following stand-
ard protocols [51-53].

Extracts were resuspended in 20-30 μl of dH2O. A 658
region near the 5' terminus of the CO1 gene was amplified
using primers LepF1/LepR1. In cases where a full length
product was not successfully generated, internal primer
pairs (LepF1/C_ANTMR1D) and (MLepF1/LepR1) were
employed to generate shorter sequences. These could be
overlapped to create composite sequence (contig) or
could be analyzed as shorter, non-barcode-standard
length standard sequences. (See Table 2 for a complete list
of primers and sources).

PCR reactions were carried out in 96 well plates in 12.5 μl
reaction volumes containing: 2.5 mM MgCl2, 1.25 pmol
of each primer, 50 μM dNTPs, 10 mM Tris HCl (pH 8.3),
50 mM KCl, 10-20 ng (1-2 μl) of genomic DNA, and 0.3
unit of TaqDNA polymerase (Platinum® Taq DNA
Polymerase - Invitrogen) using a thermocycling profile of
one cycle of 2 min at 94°C, five cycles of 40 sec at 94°C,
40 sec at 45°C, and 1 min at 72°C, followed by 36 cycles
of 40 sec at 94°C, 40 sec at 51°C, and 1 min at 72°C, with
a final step of 5 min at 72°C. Products were visualized on
a 2% agarose E-Gel® 96-well system (Invitrogen) and sam-
ples containing clean single bands were bidirectionally
sequenced using BigDye v3.1 on an ABI 3730xl DNA Ana-
lyzer (Applied Biosystems).
Page 8 of 12
(page number not for citation purposes)



Frontiers in Zoology 2009, 6:31 http://www.frontiersinzoology.com/content/6/1/31
Contigs were made using Sequencher v4.0.5 (Gene
Codes) and the Contig Express module of Vector NTI v10
(Invitrogen Corp.) and subsequently aligned by eye in
Bioedit [54]. Sequence divergences were calculated using
the K2P distance model [55] and a NJ tree of distances
[56] was created to provide a graphic representation of the
patterning of among-species divergences using
MEGA4[24], and BOLD [57]. Tests for sequence neutrality
[Tajima's D - [58]] and rates of substitution were calcu-
lated with DNAsp [59].

Sequences, trace files and other specimen information are
available in the project file "Ant Diversity of Mauritius
[ASMA]" in the Published Projects section of the Barcode of
Life website http://www.barcodinglife.org with complete
collection information for each specimen deposited at http:/
/www.antweb.org. All sequences from the barcode region
have been deposited in GenBank [EF609645-EF610627,
EU150286-EU150369 &EU525187-EU525240].

Complementary genetic analyses
In addition to the CO1 barcode region, we amplified por-
tions of the rDNA gene regions for a portion of the large
subunit (LSU or 28S - variable D2 region) for 206 speci-
mens and the variable spacer region (ITS1) for 51 speci-

mens. Specimens selected for this complementary
treatment had displayed one of two features on initial anal-
ysis. In the first case, their initial barcode analyses had dem-
onstrated large mitochondrial divergences within single
morphological ascribed units. Alternatively, the initial bar-
code analysis had, 'failed' in that no barcode was produced
and in this case we tested the validity of the re-extraction
using ITS1 or 28S rDNA. The 28S amplicon forward primer
corresponds to positions 3549-3568 in the Drosophila mel-
anogaster reference sequence (GenBank M21017). The ITS1
forward primer used corresponds to positions 1822-1843
in the same D. melanogaster reference sequence. Primers
used to generate these fragments are listed in Table 2. Rep-
resentative sequences have been deposited in GenBank:
[28S: EU401992-EU402079, EU417909-EU417943,
EU439628-EU439648 &EU490435-EU490496; and ITS1:
EU439616-EU439627, EU518129-EU518168].

For nearly a third of the specimens barcoded, we utilized
a standard PCR diagnostic to test for the presence of Wol-
bachia [60]. Wolbachia are obligate intracellular endosym-
biotic bacteria that cause reproductive incompatibility
between infected and uninfected lineages, resulting in an
increased proportion of infected maternal lineages that
cannot reproduce [61]. The assay we utilized is a PCR-

Table 2: Primers used to generate sequences and molecular tests.

Primer Name Primer sequence (5'-3') Amplicon region Primer source Used for sequencing (Y/N)

LepF1 ATTCAACCAATCATAAAGATATTGG CO1 [66] Y

LepR1 TAAACTTCTGGATGTCCAAAAAATCA CO1 [53] Y

MLepF1 GCTTTCCCACGAATAAATAATA CO1 [67] Y

C_ANTMR1D-RonIIdeg_R GGRGGRTARAYAGTTCATCCWGTWCC CO1 [Modified from 
[68]]

N

C_ANTMR1D-AMR1deg_R CAWCCWGTWCCKRMNCCWKCAT CO1 [Modified from 
[33]]

N

D2B GTCGGGTTGCTTGAGAGTGC 28S [69] Y

D3Ar TCCGTGTTTCAAGACGGGTC 28S [69] Y

CAS18Fs1 TACACACCGCCCGTCGCTACTA ITS1 [70] Y

CAS5p8s1Bd ATGTGCGTTCRAAATGTCGATGTTCA ITS1 [Modified from 
[70]]

Y

wsp 81F TGGTCCAATAAGTGATGAAGAAAC Wolbachia surface 
protein

[60] Y

wsp 691R AAAAATTAAACGCTACTCCA Wolbachia surface 
protein

[60] Y
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based test for a Wolbachia specific surface coding protein
(wsp). As the extracts tested are generally from ant legs,
the Wolbachia presence/absence test should be considered
conservative (i.e. since reproductive organs were not
extracted, less severe infections would not likely yield a
positive reaction in this test, and would thus constitute
false negatives). In addition to this selective assay, we
observed 6 cases where initial barcode amplification from
Plagiolepis madecassa DNA extracts resulted in CO1 ampli-
cons of Wolbachia. In each case, these amplicons were
identified as bacterial contaminants and excluded from
analyses of Formicidae. Subsequent re-amplification pro-
duced the P. madecassa CO1. Wolbachia WSP sequences
from Pristomyrmex browni, Plagiolepis madecasa, Pheidole
megacephala, Technomyrmex albipes, Strumigenyis MU02,
and Pyramica ludovici have been deposited in GenBank
[EU5181169-EU518183].

Rarefaction curves were generated for pairwise combina-
tions of study localities using the program CONSERVE IV
(version v1.3).

See Additional File 1, for all collection information,
sequence information, GenBank accessions, Wolbachia
test results and specimens accessions for specimens used
here.

Diversity
We tested whether the pairwise comparison of locality
diversity was affected by measuring biodiversity using
morphology or DNA based units of diversity.

Indices based on sampling the genetic diversity of taxa
and areas have been proposed to standardize and increase
the rate of sampling localities and to provide a more accu-
rate reflection of evolutionary history than morphological
analyses alone [62-64]. To test this hypothesis, we created
neighbor-joining trees (K2P distances) for all specimens
included here with CO1 sequences longer than 500 bp.
We then utilized the program CONSERVE [65] to deter-
mine the proportion of phylogenetic diversity (as an esti-
mate of evolutionary history [14]) reflected in the barcode
region maintained in that geographic location. We com-
pleted pair-wise comparisons of all combinations for the
ten sites to see what minimum number of localities pre-
served the most genetic diversity on the island. This type
of genetic analysis of biodiversity was completed on spec-
imens 1) with truncated sequence length (130 bp); 2) for
which we had also sequenced 28S D2 rDNA; and 3) coded
by site and whether they were known to be native or intro-
duced species on Mauritius. The short fragment used here
is comparable to the short universally-primed amplicon
proposed to be ideal for sequence characterization envi-
ronmental mixtures through massively parallelized
sequencing technologies [39].
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