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Abstract

Background: The identification of vast numbers of unknown organisms using DNA sequences becomes more and
more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome
c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms.
Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of
introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular
endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.

Results: We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion
segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As
nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344
specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using
COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied
Carabidae.

Conclusion: Our results confirm that the analysed nuclear ribosomal expansion segments in combination
constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only
mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification
of even closely related carabid species.

Background
In times of climate change and massive habitat destruc-
tion, the reliable identification of species represents a
pivotal component for biodiversity studies and conserva-
tion planning. However, routine identification of many
species can be difficult and time-consuming, often
requiring highly specialized knowledge, and therefore
represents a limiting factor in biodiversity assessments
and ecological studies [1-3]. In addition to this, the
identification of larval stages or fragments of organisms

using conventional morphological methods constitutes
an impossible task for many taxa [4-6].
In this context, the use of DNA sequences represents

a promising and effective tool for fast and accurate spe-
cies identification [7-9]. Animal mitochondrial DNA
exhibits several characteristics that makes it attractive
for molecular taxonomy, namely the generally high sub-
stitution rates, the almost exclusively maternal inheri-
tance, and the lack of recombination [10,11]. Moreover,
because of uniparental inheritance and haploidy,
mtDNA has a four-fold smaller effective population size
compared to nuclear DNA, leading to faster lineage
sorting [12]. A 650 base pair fragment of the 5′ end of
the mitochondrial cytochrome c oxidase I (COI) gene
was proposed as global standard, the so-called “barcode
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region” for animals [7,13]. This barcode approach has
been successfully applied in various vertebrate and
invertebrate taxa for species delimitation and identifica-
tion [14-19]. Subsets of the standard COI barcode have
been shown to be effective for species-level identifica-
tion in specimens whose DNA is degraded [20,21].
Nevertheless, the exclusive use of mitochondrial gene
fragments is not without risks. The concept of DNA
barcoding relies on low levels of mtDNA variation
within species in combination with clear genetic differ-
entiation between species, the so-called barcoding gap.
Various studies found high levels of overlap in intra-
and interspecific genetic distances for some selected
taxa [22,23]. DNA barcoding can also overestimate the
number of species when nuclear mitochondrial pseudo-
genes (numts) are coamplified [24-27]. Introgression
events and/or incomplete lineage sorting can cause
trans-specific polymorphisms in mitochondrial DNA,
contorting the mitochondrial variability of studied
organisms [28]. Such events have been demonstrated for
various arthropod taxa, for example insects [29-33] or
spiders [34,35]. Heteroplasmy events can also confuse
the identification system also [36], but are rare [37].
Finally, maternally inherited endosymbionts such as the
a-proteobacteriae Wolbachia or Rickettsia may cause
linkage disequilibrium with mtDNA, resulting in a
homogenization of mtDNA haplotypes [38-40].
All these problems show that standardised and com-

plementing nuclear markers are necessary if a provi-
sional species, uncovered using COI barcodes, is to be
considered as species. In this context, nuclear ribosomal
genes may represent potential supplementary markers
for species identification. Nuclear ribosomal genes are
generally considered to be highly conserved, but are
actually composed of a mixture of conserved and vari-
able regions that are organized in clusters that contain
hundreds of copies per haploid genome. In metazoan
taxa, these tandem rDNA units are highly uniform
within a species [41-44], but differ between closely
related species [e.g. [45-49]]. Until now, there have only
been a few studies using nuclear rDNA sequences for
DNA taxonomy: complete small ribosomal subunit
DNA (18S rDNA) sequences were used to identify
invertebrate taxa [1,5], while the variable D1-D2 or D3-
D5 regions of the large ribosomal subunit DNA (28S
rDNA) were found to be suitable markers for various
fungi [50,51], arthropods [2,52,53] freshwater meio-
benthic communities [54], and a broad range of
metazoan taxa [55]. The main limitation to these
approaches lies in the length of the analysed sequences
(usually >>1000 base pairs (bp)), preventing a simple
amplification of degraded DNA (e.g. from collection
specimens in museums) and, most important, efficient
use in large-scale biodiversity studies [56]. Nevertheless,

it should be also noted that various potential problems
can be associated with the use of ribosomal genes, for
example intragenomic variations among rRNA gene
copies. As far as we know, very few cases of intrage-
nomic variations have been observed for Metazoa until
now [57-63]. Multiple variants of the 18S rRNA gene
were found in a dinoflagellate [64], a platyhelminth [65],
and the Lake sturgeon Acipenser fulvescens [66,67].
While core elements of the eukaryotic ribosomal RNA

genes are considered to be essential for ribosome func-
tions that evolve slowly and evenly [68,69], the so-called
divergence or expansion segments show a high variabil-
ity in primary sequence and length between even closely
related species as a consequence of DNA slippage-like
processes [70-73]. In most cases, expansion segments
have highly conserved flanking sites [68,69,74]. Although
the exact functions remain elusive, various studies of
eukaryotic ribosomes provide some clues about the
functional aspects of expansion segments in rRNAs
[75-77], including intersubunit bridges and scaffolds
allowing proteins to bind to ribosomes [78]. In addition,
some of their structural features seem to be important
for the stability of rRNA [75,79,80].
Following these considerations, we analysed and com-

pared the usefulness of nuclear ribosomal expansion seg-
ments and COI barcodes for the molecular identification
of Central European carabid beetles. The Carabidae are
among the largest and most diverse insect families, with
no less than an estimated 40,000 described species that
inhabit all terrestrial habitat types from the sub-arctic to
wet tropical regions [81,82]. This diversity and wide distri-
bution, along with the predominance of these beetles in a
large variety of habitats, has resulted in a considerable
interest in many aspects of their biology, including sys-
tematics, phylogeny, biogeography, ecology and evolution
[83-87]. Ground beetles show different levels of habitat
selectivity, ranging from generalists to specialists, and
therefore carabid assemblages can be used as highly valu-
able bioindicators for characterizing disturbances in var-
ious habitats such as forests, meadows or fens [88]. Due to
the continuous and intensive study of ground beetles in
Central Europe, their taxonomic classification is well-
established. In Central Europe, more than 750 species are
known [89]. Nevertheless, the identification of many spe-
cies and especially of larval stages can be very difficult as a
consequence of high morphological variability within spe-
cies and due to the existence of sibling species.
Our study examined the effectiveness and suitability of

one mitochondrial (COI) and three nuclear markers, the
expansion segments V4 and V7 of the 18S rDNA and the
D3 expansion segment of the 28S rDNA as molecular
identification tools for 75 selected ground beetle species
out of 26 genera from Central Europe. We compared
intra- and interspecific divergences using Kimura
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2-parameter (K2P) distances and uncorrected p-distances
between all analysed COI sequences and p-distances for
all rDNA gene fragments of many closely related species,
e.g. Agonum emarginatum/viduum, Clivina collaris/fos-
sor, or Harpalus affinis/rubripes. Furthermore, we ana-
lysed the discrimination capacity of the used marker
systems within two well-known pairs of sibling species,
Bembidion lampros/properans [90-94] and Pterostichus
nigrita/rhaeticus [95-98].

Results
We examined 344 specimens representing 75 species
and 28 genera of Central European ground beetles. The
mitochondrial COI region and all three selected nuclear
regions were successfully amplified and sequenced in all
cases, confirming the universality of the selected primers
for ground beetles. While the majority of the analysed
beetles had been collected 1-2 years ago and were pre-
served in 96% ethanol, it was also possible to generate
full length sequences with tissue samples of pinned spe-
cimens up to 12 years old. There was no indication of

numt amplification for the COI dataset. Most impor-
tantly, we found no intragenomic or intraspecific varia-
tions within the analysed nuclear rDNA markers.

The COI dataset
All COI sequences were heavily AT biased, with an aver-
age A+T-content of 67.6%. The average interspecific K2P
distance was 12.6% (p-distance: 11.5%), while the lowest
distances were observed between Agonum emarginatum
and Agonum viduum (K2P distances: 3.14%, p-distances:
3.06%) (Figure 1). Intraspecific distances ranged up to
3.8% for the analysed Nebria hellwigii specimens (p-dis-
tances: up to 3.7%), while specimens of Carabus nemora-
lis were characterized by K2P distances ranging up to
2.7% (p-distances: 2.6%) (Figure 2). However, both spe-
cies revealed two distinct clades without intermediate
haplotypes. In contrast to this, it was not possible to dis-
criminate Pterostichus nigrita from Pterostichus rhaeticus
using COI sequences. Both species shared various identi-
cal haplotypes, and K2P distances ranged from 0 up to
0.5% (p-distances: 0 to 0.5%) for both species (Figure 2,
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Figure 1 Interspecific K2P divergences of the COI barcode fragment. See Methods for more details.
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Figure 2 Neighbor-joining tree of COI sequence divergences (K2P) in 75 ground beetle species from Central Europe. Numbers next to
internal branches are bootstrap values, which are only given if they have a value of 95 or more. Numbers in brackets indicate the number of
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Table 1). A Klee diagram revealed correlation values >
0.75 for six species pairs, Agonum emarginatum/viduum,
Agonum marginatum/muelleri, Clivina collaris/fossor,
Harpalus affinis/rubripes, Pterostichus nigrita/rhaeticus,
and Pterostichus panzeri/ziegleri, indicating a high simi-
larity of the uncorrected COI sequences among these
species pairs (Figure 3).

The rDNA datasets
Fragment lengths ranged from 185 (various species) to
254 bp (Molops piceus) with an average length of 198
bp for the D3 marker, 355 (Dromius quadrimaculatus)
to 515 bp (Omophron limbatum) for the V4 marker
(average length: 384 bp), and 388 (both studied

Philorhizus species) to 504 bp (Omophron limbatum)
for the V7 marker (average length: 414 bp) (Figure 4).
Average p-distances between species within genera were
6.0% for the D3, 3.7% for the V4 and 4.6% for the V7
expansion fragment (Figure 5). Our study revealed that
single base changes (substitutions, insertions or dele-
tions) for all three analysed markers unambiguously
separate closely related species, e.g. Amara anthobia
and Amara erratica (D3), Agonum viduum and Agonum
marginatum (V4), and Harpalus affinis and Harpalus
rubripes (V7) (Table 1). Nevertheless, in some cases var-
ious species showed identical sequences and therefore
no resolution, anticipating a successful species discrimi-
nation, e.g. Elaphropus parvulus and Elaphropus

Table 1 Interspecific nucleotide divergences of all four markers, given in cases in which at least one of the analysed
markers did not resolve the species pair

Taxa pairs 28S: D3 18S: V4 18S: V7 28S: D3 +18S: V4
+V7

COI

Agonum emarginatu/viduum identical
sequences

0.0026/1 0.0025/1 0.002/2 0.0314

Agonum marginatum/micans 0.005/1 identical
sequences

0.0025/1 0.0021/2 0.0793 - 0.0828

Agonum marginatum/muelleri 0.005/1 identical
sequences

0.0025/1 0.0021/2 0.0506 - 0.0507

Agonum micans/muelleri 0.005/1 identical
sequences

identical
sequences

0.001/1 0.0809 - 0.0861

Amara anthobia/erratica 0.005/1 0.0028/1 identical
sequences

0.0021/2 0.0677 - 0.0713

Amara anthobia/similata identical
sequences

0.0084/3 0.0274/11 0.0146/14 0.0713 - 0.0714

Anisodactylus binotatus/Harpalus
rubripes

0.0302/6 identical
sequences

0.005/2 0.0084/8 0.0723 - 0.0744

Bembidion decorum/tetracolum identical
sequences

0.0048/2 0.0145/6 0.0079/8 0.1245 - 0.1283

Clivina collaris/fossor identical
sequences

identical
sequences

identical
sequences

identical sequences 0.0446 - 0.0503

Dyschirius aeneus/thoracicus 0.0313/6 identical
sequences

0.0119/5 0.0109/11 0.109 - 0.1126

Elaphropus parvulus/quadrisignatus identical
sequences

identical
sequences

0.0075/3 0.003/3 0.0739 - 0.079

Harpalus affinis/rubripes identical
sequences

0.0028/1 0.0025/1 0.0021/2 0.0458

Harpalus affinis/rufipes 0.02/4 identical
sequences

0.0025/1 0.0052/5 0.0706 - 0.0723

Nebria hellwigii identical
sequences

identical
sequences

0.0024/1 0.001/1 0 - 0.038

Pterostichus jurinei/ziegleri 0.042/9 identical
sequences

0.0125/5 0.0143/14 0.0573 - 0.064

Pterostichus nigrita/rhaeticus identical
sequences

identical
sequences

identical
sequences

identical sequences identical
sequences

Pterostichus panzeri/jurinei 0.0467/10 identical
sequences

0.0125/5 0.0153/15 0.0572 - 0.0657

Pterostichus panzeri/ziegleri 0.014/3 identical
sequences

identical
sequences

0.0031/3 0.0442 - 0.0475

Stenolophus mixtus/teutonus identical
sequences

0.0111/4 0.005/2 0.0062/6 0.0865 - 0.0886

For COI sequences, values indicate the range of K2P divergences. For the nuclear markers, values indicate p-distances (left) and the number of base substitutions
(right).
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quadrisignatus for the D3 (Additional file 1), Agonum
marginatum, Agonum micans and Agonum muelleri for
the V4 (Additional file 2), and Amara anthobia and
Amara erratica for the V7 marker (Additional file 3).
All taxa without resolution are summarized in Table 1.
In the case of both Clivina species and the sibling spe-
cies Pterostichus nigrita/rhaeticus, no substitutions were
observed in the studied nuclear sequences at all. Other-
wise, it was possible to discriminate two different V7
sequences for Nebria hellwigii, differing in one base.
Furthermore, both sequences correlated with the two
distinct COI haplotype clusters (see above), while the
two other nuclear markers showed no variation. Sum-
marizing the results, it was possible to discriminate 61
(81%) species using the D3 marker, 57 (76%) using the
V4 marker, and 65 (87%) using the V7 marker. The
combined analyses of all three nuclear markers provided
resolution for 71 (95%) species (Figure 6).

Discussion
The issue of choosing thresholds for species delineation
is a primary concern for molecular taxonomy [99], parti-
cularly when intraspecific variation can be shown to be

greater than interspecific variation. In the case of COI, a
species identification threshold has been suggested that
amounts to ten times the arithmetic mean of intraspeci-
fic distances [100], which is usually low (less than 1%)
and rarely more than 2% across a broad range of taxa
[7,13,20,100-104]. However, this “10-fold rule” has been
questioned in subsequent studies [105-107], because it
has no strong biological background and undoubtedly
cannot become a universal, invariable criterion to spe-
cies delineation across all taxa [24,25,107]. Another
approach comprises the analysis of mtDNA branching
times using a general mixed Yule-coalescent (GMYC)
model estimates the species boundary by identifying
independently evolving lineages as a transition from coa-
lescent to speciation branching patterns on a phyloge-
netic tree [108]. First case studies reveal the potential of
this approach [108-111], but former bottleneck events
or selective sweeps can become problematic in recon-
structing the coalescence of mtDNA lineages and there-
fore for species delineation. It should be also kept in
mind that such methods are also sensitive to introgres-
sion and incomplete lineage sorting, and cannot be used
analyzing a high number of specimens.
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Based on our data, lowest interspecific COI distances
were observed between Agonum emarginatum and Ago-
num viduum (K2P distances: 3.14%, p-distances: 3.06%).
With one exception (Nebria hellwigii), all intraspecific
distances were below these values. Our results confirm
the high potential of COI barcodes for species identifica-
tion of even closely related carabid species although it
was not possible to discriminate the two species of the
Pterostichus nigrita/rhaeticus species complex (Figure 2,
Figure 3, Table 1). Nevertheless, it is important to study
additional specimens of the already analysed species,
preferable from different locations, as well as missing
species have to be analysed to gain more specific
insights in the intra- and interspecific COI variability of
ground beetles.
For molecular species identification, the use of rDNA

is not a new approach [1,2,5,50-55]. However, pub-
lished studies rely on the analysis of long rDNA frag-
ments [2,50-55] or complete rDNA genes [1,5],
currently preventing a routine use in large-scale biodi-
versity studies. As a consequence, our study was

focused on analysing the usefulness of three short
expansion segments from two different rRNA genes
(18S and 28S) as supplementary molecular markers to
the COI barcode region for ground beetles. In contrast
to COI, the species identification threshold for all ana-
lysed rDNA marker had an amount of one base substi-
tution, insertion or deletion. The individual
identification success using the rDNA marker was lim-
ited: The D3 marker was able to discriminate 61 (81%)
species, the V4 marker 57 (76%), and the V7 marker
allowed an unambiguous identification of 65 (87%)
species. However, the combination of all three nuclear
markers provided resolution for 71 (95%) species. Only
two species pairs, Clivina collaris/fossor and Pterosti-
chus nigrita/rhaeticus, were not discriminated (Figure
6, Table 1). Summarizing all results, our data showed
that COI represented the most successful molecular
marker for species determination (73 = 97%) for
the studied ground beetle species, closely followed by
the combination of all three nuclear rDNA markers
(71 = 95%).
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The analysed nuclear ribosomal expansion segments
show some important aspects that are quite useful in
molecular species identification. Firstly, they show a sig-
nificant species level genetic variability and divergence
for most species when used in combination; the exclu-
sive use of a single segment will not discriminate all
analysed species. Secondly, all analysed fragments have
appropriately short sequence lengths in comparison to
the COI fragment, facilitating easy amplification and
sequencing. Finally, highly conserved flanking sites allow
the generation of primers useable for a broad range of
taxa. However, it must be emphasized that the power of
rDNA sequences for identifying species is limited when
sister species pairs have a very recent origin, as sug-
gested for Clivina collaris and Clivina fossor. In such
cases, the analysis of COI sequences represents a more
advantageous and effective approach, because substitu-
tion rates of mitochondrial genes are, in general, higher
than those of nuclear rRNA genes. Nevertheless, the
quality of other expansion segments to discriminate spe-
cies, especially closely related ones, should be also tested
in further studies.
Our analysed data revealed some important insights

into the genetic variability of nuclear genes and mito-
chondrial genes of ground beetles that are discussed in
more detail.

The sibling species pair Bembidion lampros/properans -
molecular data confirm two distinct species
Although overall morphological differences between
both species are small, for example characteristic frontal
furrows, the structure of the elytral striae and shape of
the pronotum [98,102,112], both Bembidion species can
be clearly distinguished by all molecular markers used.

Interspecific K2P distances for COI ranged from 9 to
9.4% (p-distances: 8.4-8.8%), while the number of
sequence substitutions ranged from three (V4) to four
(V7, D3) for the analysed nuclear markers. For all four
markers, sequence divergence between both species lay
considerably above any of the thresholds suggested in
the literature or our own study, indicating that Bembi-
dion lampros and Bembidion properans are in fact two
distinct species.

The sibling species Pterostichus nigrita/rhaeticus -
speciation in progress?
Various ecological and crossbreeding studies give evi-
dence of two long ignored but distinct species, Pterosti-
chus nigrita and Pterostichus rhaeticus [95-98,113].
Overall morphological differences between both species
are very subtle and hardly noticeable. Males may be
identified by the shape of the inflated endophallus
including intermediate stages, while females can be
identified by the form of the eighth abdominal sternite
[96-98]. Accordingly, there were no sequence variations
within the three nuclear markers and the COI sequence
divergence (K2P distances: 0 to 0.01%, p-distances: 0 to
0.01%) was very low. For COI, both species shared iden-
tical haplotypes, and there was no evidence for any dif-
ferentiation among both species (Figure 7). It was not
possible to consistently discriminate between both spe-
cies using any of the analysed molecular markers in this
study. However, when species pairs have very recent
origins or hybridize, the use of DNA sequences for spe-
cies identification is very limited: after the initial “split”,
new sister species will share alleles and mutations in
slowly evolving genes [114]. Beside this, morphological
distinctiveness may evolve much faster than the studied
popular “standard” genes. Further specimens from var-
ious locations and different markers should be tested to
understand the population structure of this species
complex in more detail. Molecular markers with a
higher resolution on population level, for example
microsatellites or SNPs rather than single locus coding
genes alone can give more insights into genetic variabil-
ity and gene flow through migration and dispersal
[10,11].

Clivina collaris/fossor - recently evolved distinct species?
The ground beetle Clivina collaris represents the sister
species of Clivina fossor and has, in the past, often been
regarded as a variety of the former [112]. However,
Clivina collaris is somewhat smaller and flatter than
Clivina fossor, and various other morphological traits
(the shape of the elytra, genital morphology, details of
the inner armature and different ecological preferences)
clearly support the existence of two closely related but
distinct species [89,115]. Kimura 2-parameter distances
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Figure 5 Boxplot distribution of the interspecific p-distances
for the D3, V4 and V7 gene fragments. See Methods for
methods of distance calculation and boxplot representations.
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of the COI sequences ranged from 4.5 to 5.3% (p-dis-
tance: 4.4-5.1%), while all three nuclear datasets revealed
no sequence variation, indicating a possible recent
separation of both species.

Nebria hellwigii - more than one species?
The distribution of Nebria hellwigii is restricted to the
alpine and high alpine regions of the Eastern Alps [89].
Based on genital morphology, a few subspecies are
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Figure 6 Neighbor-joining tree of the concatenated D3, V4 and V7 expansion fragment datasets for 75 carabid species. Values in
brackets indicate the number of analysed specimens that were grouped together. Species with identical sequences are marked with grey boxes.
Asterisks indicate representative ground beetles of genera with at least two analysed species for which illustrations are provided. All images were
obtained from http://www.eurocarabidae.de.
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discussed [89]. Our data revealed two distinct COI hap-
lotype lineages without intermediates and K2P distances
of 3.8% (p-distance: 3.7%) that are higher than the low-
est interspecific distances (K2P distances: 3.14%, p-dis-
tances: 3.06%, see above). However, both lineages were
also identified by the nuclear V7 marker (Figure 6), giv-
ing evidence for the existence of a sibling species pair
with sympatric distribution. Additional specimens have
to be studied to evaluate these first results more in
detail.

Carabus nemoralis - indication of introgressive
hybridization events and/or incomplete lineage sorting
A European wide-temperate and highly eurytopic spe-
cies, Carabus nemoralis is widely distributed throughout
Central and Northern Europe [89]. Beside significant
shape variations between different populations
[116,117], population genetic analyses using microsatel-
lites revealed a complex genetic differentiation
[118,119]. For this species, our COI data revealed two
distinct haplotype lines with K2P distances of 2.7% (p-
distances: 2.6%), without intermediates. However, all
nuclear markers show no variation. Although we cannot
exclude a linkage disequilibrium caused by inherited
endosymbionts as well as heteroplasmy at the moment,
introgressive hybridization events with other closely
related Carabus species or incomplete lineage sorting
represent the most plausible explanation for the

observed high level of mitochondrial genetic differentia-
tion. Both phenomena are well-known from other Cara-
bus species and closely related genera [29-31,120]. In
this case, the only use of COI sequences for molecular
taxonomy using a threshold of 2% or below (see above)
will clearly overestimate species diversity.

Conclusions
Based on the analyses of our various datasets, we have
come to the conclusion that nuclear ribosomal expan-
sion segments can constitute a valuable and efficient
supplement for classical DNA barcoding studies based
on mitochondrial COI sequences. While the individual
identification success using the rDNA marker was lim-
ited, the combination of all three nuclear markers pro-
vided resolution for 71 (95%) of the studied 75 ground
beetle species. Using COI, 73 species (97%) of the stu-
died ground beetle species were accurately identified.
Our study confirms the high potential of DNA sequence
data for successful species identification of even closely
related ground beetle species.

Methods
DNA extraction, amplification and sequencing
For our study, a total number of 344 specimens belong-
ing to 75 different species out of 26 carabid genera were
analysed (Additional file 4). All beetles were identified
by one of the authors of this article (KH). The charac-
terization of intraspecific variation, introgression or
other phenomena as well as the detection of cryptic spe-
cies cannot be accomplished with only one individual
per species; therefore at least two specimens per species
and, if possible, specimens from different locations were
analysed. The number of studied specimens per species
ranged from a minimum of two to a maximum of 13,
with four individuals per species on average (Additional
file 5).
Genomic DNA samples were prepared from fresh bee-

tles, beetles preserved in 96% ethanol or pinned
museum specimens. Total genomic DNA was extracted
from dissected legs of specimens or complete specimens
using the QIAmp© Tissue Kit (Qiagen GmbH, Hilden),
following the manufacturers extraction protocol. Speci-
mens are deposited in the collection of the Zoologisches
Forschungsmuseum Alexander Koenig (ZFMK), Bonn,
Germany. In addition, all analysed DNA extracts are
deposited in the DNA bank of the ZFMK as part of the
DNA Bank Network (http://www.dnabank-network.org).
In total, 344 sequences were newly generated for this

study for all analysed gene fragments. GenBank acces-
sion numbers, tissue voucher depositories and collection
site are listed in Additional file 4. Three sequences of
one outgroup taxon (the cupedid beetle Priacma serrata,
COI: EU839762, 18S rDNA: EU797411, 28S rDNA:

Pterostichus nigrita (n = 10)

Pterostichus rhaeticus (n = 7)

11

2

1

Figure 7 Statistical parsimony network showing the mutational
relationships among the analysed mitochondrial COI
haplotypes of Pterostichus nigrita (green) and Pterostichus
rhaeticus (blue). Each line in the network represents a single
mutational change; small black dots indicate missing haplotypes.
The numbers of analysed specimens (n) are listed; the diameter of
the circles is proportional to the number of haplotypes sampled
(see Open circles with numbers). Images were obtained from http://
www.eurocarabidae.de.

Raupach et al. Frontiers in Zoology 2010, 7:26
http://www.frontiersinzoology.com/content/7/1/26

Page 10 of 15

http://www.dnabank-network.org
http://www.frontiersinzoology.com/content/7/1/26
http://www.frontiersinzoology.com/content/7/1/26


EU797380) were obtained from GenBank. All 1356
amplification reactions were carried out on a Thermal
Cycler GeneAmp© PCR System 2700/2720 (Applied Bio-
systems, Darmstadt) in 20 μl volume, containing 4 μl Q-
Solution, 2 μl 10 × Qiagen PCR buffer, 2 μl dNTPs (2
mmol/μl), 0.1 μl of each primer (both 50 pmol/μl), 1 μl
of DNA template with an amount between 2 to 150 ng/
μl, 0.2 μl Qiagen Taq polymerase (5 U/μl), and filled up
to 20 μl with sterile H2O.
The PCR temperature profile for the mitochondrial

COI fragment (approx. 650 bp) using the primers
LCO1480 and HCO2198 [121] consisted of an initial
denaturation at 94°C (5 min), followed by 38 cycles at
94°C (denaturation, 45 s), 48°C (annealing, 45 s), 72°C
(extension, 80 s), and a final extension at 72°C (7 min).
Approximately 200 bp of the D3 region was amplified
with the forward primer CD3F and reverse primer
CD3R, using a PCR protocol of 94°C for 5 min (initial
denaturation), 32 cycles with 94°C denaturation for 45 s,
52°C annealing for 45 s, and 72°C extension for 80 s,
followed by a final 72°C extension for 7 min. A 360-510
bp region of the V4 gene fragment was amplified with
the primer pair CV4F and CV4R. The PCR temperature
protocol was 94°C for 5 min (initial denaturation), 32
cycles with 94°C denaturation for 45 s, 66°C annealing
for 45 s, and 72°C extension for 2 min, followed by a
final 72°C extension for 8 min. Finally, a 400-500 base
pair region of the V7 region of the 18S rDNA was
amplified using the forward primer CV7F and either the
reverse primer CV7R, with the following PCR condi-
tions: 94°C for 5 min (initial denaturation), 32 cycles
with 94°C denaturation for 45 s, 68°C annealing for 45
s, and 72°C extension for 2 min, followed by 72°C exten-
sion for 8 min. All primers used in amplification and
sequencing for all four gene fragments as well as all
used PCR temperature profiles are provided in Addi-
tional file 6.
Negative and positive controls were included with

each round of reactions. Two μl of amplified product
were verified for size conformity by electrophoresis in a
1% agarose gel with ethidium bromide using commercial
DNA size standards, while the remaining PCR product
was purified with the QIAquick© PCR Purification Kit
(Qiagen GmbH, Hilden). Purified PCR products were
cycle sequenced and sequenced in both directions at a
contract sequencing facility (Macrogen, Seoul, Korea) on
an ABI3730 XL automatic DNA sequencer, using the
same primers as used in PCR. Trace files revealed no
potential ambiguities indicated by multiple peaks in the
sequences. Double stranded sequences were assembled
with the SeqMan™ II program (DNASTAR, Inc., Kon-
stanz, Germany). BLAST searches were performed to
confirm the identity of all new sequences [122]. All
aligned COI sequences were translated to amino acid

sequences to check for nuclear mitochondrial pseudo-
genes (numts) using BioEdit 7.0.9.0 [123].

Data analysis
All sequences of each marker were aligned using MUS-
CLE version 3.6 [124] with default settings, generating
four individual datasets. To analyse the intra- and inter-
specific genetic variability of species, uncorrected pair-
wise distances (p-distances) and Kimura 2-parameter
(K2P) distances for the COI sequences, and p-distances
for all rDNA marker were obtained using PAUP*4.0b10
[125]. Interspecific K2P distances of the COI data set
were plotted as histogram (Figure 1), while p-distances
of all rDNA data sets were visualized using box-and-
whiskers-plots (Figure 5) [126], which represent the
overall shape of the dataset. Boxes indicate mean, 25th
and 75th percentile, while whiskers show 10th and 90th
percentile, respectively. In contrast to protein-coding
genes, the presence of multiple indels in alignments of
ribosomal expansion regions makes accurate homology
assessments across distantly related taxa difficult or
even impossible. To accommodate this problem, all
nuclear marker sequences of genera with at least two
analysed species were aligned on genus level indepen-
dent from all other taxa. Subsequently, sequence diver-
gence calculations were carried out using PAUP*4.0b10
(Figure 5). Apart from this, the frequencies of the differ-
ent lengths of the rDNA expansion fragment lengths
were plotted as histogram (Figure 4). All boxplots and
histograms were calculated using PAST version 1.94b
[127]. We also generated a Klee diagram (Figure 3)
based on indicator vector correlations for analyzing and
displaying affinities of COI haplotypes [128,129]. Using
this method, uncorrected COI haplotype sequences were
transformed into digital indicator vectors using M = 1
sequence/species, generating unique representations of
each sequence in the chosen vector space [128,129]. A
false-color map depicts correlations among the remain-
ing sequences and the species indicator vectors. The
succession of species for this approach is provided in
Additional file 7.
Neighbor-joining cluster analyses [130] were employed

for graphical representation of patterns of nucleotide
divergences among the individual specimens of the COI
dataset (Figure 2), for each single rDNA dataset (D3:
Additional file 1; V4: Additional file 2; V7: Additional
file 3), and for a combined dataset including all three
nuclear markers (Figure 6), using PAUP*4.0b10. The
neighbor-joining analysis of the COI data set was based
on K2P distances. Due to the fact that expansion seg-
ments cannot be aligned unambiguously in many cases,
only p-distances were used for all four rDNA marker
topologies. Bootstrap support values were obtained by
re-sampling and analyzing 10,000 replicates for the COI
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data set. All alignments can be obtained from the first
author upon request. In addition, a statistical parsimony
network was constructed for the COI data sets of Pter-
ostichus nigrita and Pterostichus rhaeticus with TCS
1.21 [131], using default settings (Figure 7).
It should be kept in mind that a deep phylogenetic

signal is not of central importance for molecular (alpha)
taxonomy, as it has been pointed out by various authors
[132-134]. Instead of this, DNA barcoding and molecu-
lar taxonomy focus on species delineation and
identification.

Additional material

Additional file 1: Neighbor-joining tree of D3 expansion fragments
for 75 carabid species. Numbers in brackets indicate the number of
analysed specimens. Species with identical sequences are marked with
grey boxes.

Additional file 2: Neighbor-joining tree of V4 expansion fragments
for 75 carabid species. Numbers in brackets indicate the number of
analysed specimens. Species with identical sequences are marked with
grey boxes.

Additional file 3: Neighbor-joining tree of V7 expansion fragments
for 75 carabid species. Numbers in brackets indicate the number of
analysed specimens. Species with identical sequences are marked with
grey boxes.

Additional file 4: Species identification, location of collection, and
GenBank accession numbers of the analysed Carabidae. Country
codes: GER (Germany): NRW (Nordrhein-Westfalen), NS (Niedersachsen),
SH (Schleswig-Holstein), RP (Rheinland-Pfalz), S (Sachsen), SA (Sachsen-
Anhalt); AU (Austria): K (Kärnten), SM (Steiermark), and TI (Tirol).

Additional file 5: Histogram of studied specimens per species. See
Additional file 4 for more detailed information.

Additional file 6: Primers and PCR protocols used in this study.

Additional file 7: Order of species used for the Klee diagram of
indicator vector correlations of COI sequences. The analysis is based
on a Neighbor-joining (NJ) analysis using p-distances.
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