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Abstract

Introduction: A huge diversity of marine species reproduce by synchronously spawning their gametes into the
water column. Although this species-specific event typically occurs in a particular season, the precise time and day
of spawning often can not be predicted. There is little understanding of how the environment (e.g. water
temperature, day length, tidal and lunar cycle) regulates a population’s reproductive physiology to synchronise a
spawning event. The Indo-Pacific tropical abalone, Haliotis asinina, has a highly predictable spawning cycle, where
individuals release gametes on the evenings of spring high tides on new and full moons during the warmer half of
the year. These calculable spawning events uniquely allow for the analysis of the molecular and cellular processes
underlying reproduction. Here we characterise neuropeptides produced in H. asinina ganglia that are known in
egg-laying molluscs to control vital aspects of reproduction.

Results: We demonstrate that genes encoding APGWamide, myomodulin, the putative proctolin homologue whitnin,
FMRFamide, a schistosomin-like peptide (SLP), a molluscan insulin-related peptide (MIP) and a haliotid growth-
associated peptide (HGAP) all are differentially expressed in the anterior ganglia during the two week spawning cycle
in both male and female abalone. Each gene has a unique and sex-specific expression profile. Despite these
differences, expression levels in most of the genes peak at or within 12 h of the spawning event. In contrast, lowest
levels of transcript abundance typically occurs 36 h before and 24 h after spawning, with differences in peak and low
expression levels being most pronounced in genes orthologous to known molluscan reproduction neuromodulators.

Conclusions: Exploiting the predictable semi-lunar spawning cycle of the gastropod H. asinina, we have identified a
suite of evolutionarily-conserved, mollusc-specific and rapidly-evolving neuropeptides that appear to contribute to the
regulation of spawning. Dramatic increases and decreases in ganglionic neuropeptide expression levels from 36 h
before to 24 h after the broadcast spawning event are consistent with these peptides having a regulatory role in
translating environmental signals experienced by a population into a synchronous physiological output, in this case,
the release of gametes.
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Introduction
The Mollusca is an extraordinarily diverse and successful
phylum whose members occupy a wide range of terres-
trial, freshwater and marine habitats. In the marine envir-
onment, molluscs currently account for approximately
23% of the 230,000 known animal species, a proportion ri-
valled only by the Crustacea [1], and it is estimated that
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over 50% of extant molluscs still have yet to be discovered
and described [2]. The success of marine molluscs can be
attributed partially to their varied modes of reproduction,
which range from synchronous broadcast spawning
entrained by environmental cues (e.g. chitons, bivalves
and gastropods) to copulation that is accompanied by
species-specific behaviours (cephalopods and gastropods).
Synchronised broadcast spawning of vast numbers

of gametes enables extensive mixing of genetically di-
verse gametes sourced from multiple relatively sedentary
individuals. The ensuing pelagic larval phase enables
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widespread dispersal of offspring, potentially increasing
rates of survival and allowing gene flow between
geographically-distant populations (e.g. [3-5]). Despite the
importance of the synchronisation of spawning in mol-
luscs and other marine animals in maximising fertilisa-
tion and dispersal, there currently is little understanding
of the controlling mechanisms. Although day length,
water temperature, lunar cycle and tidal cycle have all
been correlated with gamete release (e.g. [6-11]), only in a
few cases have the environmental cues that induce spawn-
ing been characterised to a level that spawning events can
be predicted with high accuracy [7,12-16]. The endogen-
ous physiological changes that result in the synchronous
release of gametes within a population or species remain
largely unknown across the animal kingdom.
In molluscs, regulation of the reproductive cycle has

been attributed at least in part to various neuropeptides.
Investigations primarily in egg-laying species suggest
that regulation is achieved not by any single peptide, but
rather by a complex cocktail of neurohormones [17-26].
Neuromodulator oligopeptides have specific effects on
reproductive organs. For example, APGWamide contri-
butes to peristalsis in the vas deferens of the great pond
snail Lymnaea stagnalis [17,18]. This hormone also has
been implicated as a spawning stimulant in the male
tropical abalone Haliotis asinina [27]. In L. stagnalis, the
caudodorsal cell hormone (CDCH) contributes to oocyte
release, egg packaging and oviposition [19,28], while the
dorsal body hormone (DBH) regulates vitellogenesis and
female cell maturation [29]. By comparison, the schisto-
somin peptide hormone inhibits reproduction by inhibit-
ing CDCH and DBH [20].
Amongst broadcast spawning molluscs, there is

less known about hormonal regulation of reproduction.
H. asinina has a highly predictable spawning cycle, allow-
ing for a detailed analysis of the factors influencing
reproduction and spawning. In the wild, H. asinina spawns
fortnightly in a highly predictable and synchronised manner
through the reproductive season, which on the southern
Great Barrier Reef lasts about 6 months [7,12]. Spawning is
tightly correlated with spring tides associated with new and
full moons, with spawning events occurring within an hour
of the evening high tide [7]. Final oocyte maturation and re-
lease from gonadal connective tissue (trabeculae) occurs
about 18 h earlier, around the time of the morning low tide
[12]. The timing and height of this low tide has been impli-
cated in controlling the cascade of events that lead to
spawning [7]. In addition, abalone removed from natural
lunar and tidal cycles (i.e. transported to an indoor closed
system away from the sea) maintain synchronous, fort-
nightly spawnings for at least two cycles (i.e. one month),
indicating that endogenous rhythms play a regulating role
and that the natural spawning cycle can not be disrupted
by removing H. asinina from its natural habitat [7].
Here, we describe how H. asinina orthologues of
four well established molluscan reproduction-related
neuropeptide-encoding genes - APGWamide, myomodulin,
FMRFamide and schistosomin - and three additional neuro-
peptide genes - whitnin, haliotid growth associated peptide
(HGAP), and molluscan insulin-related peptide (MIP) - vary
in expression in the cerebral and pleuropedal ganglia (here-
after collectively referred to as the anterior ganglia)
throughout the two week H. asinina reproductive cycle.
Using quantitative reverse transcription-polymerase chain
reaction (qPCR), we compare the expression levels of these
genes in male and female anterior ganglia. In the two days
prior to and the day following the spawning event, all
neuropeptide genes were differentially expressed, with some
showing peaks in expression at the spawning event and
others 12 h prior to or after the event. In many cases,
expression levels differed in male and female ganglia
for a given gene. These results are consistent with the
neurohormones secreted from anterior ganglia playing
a role in controlling a synchronised broadcast spawn-
ing event in H. asinina.
Results
Sequence and post-translational processing of Has-
APGWamide, Has-Myomodulin and Has-Whitnin
A single, partial-length clone encoding Has-APGWamide
was identified from the reproductively active anterior
ganglia vs. non-reproductively active anterior ganglia
(RA/NRA) suppression subtractive hybridisation (SSH)
library (see methods), and its sequence was extended
by rapid amplification of cDNA ends (RACE). Isolated
full-length sequence length was 969 bp [GenBank:
JN606061], encoding a 222 residue prepropeptide
(Figure 1A). Has-APGWamide is predicted to encode 10
copies of APGWamide, 6 connecting peptides (CPs), and a
C-terminal peptide, and is most similar to the Aplysia cali-
fornica APGWamide gene [30] (Figure 1B); H. asinina
CPs are numbered using the system for Aplysia [31].
Examination of anterior ganglia sections by matrix-
assisted, laser desorption-ionisation time-of-flight mass
spectrometry (MALDI-TOF-MS) (Figure 1C.) revealed
masses consistent with APGWamide (m/z 428.5) in all
sections examined (cf. [32]), and an acetylated CP3 pep-
tide (m/z 1124.2) was found in all sections except the
cerebral commissure. By ganglionic region, observed m/z
were: left cerebral ganglia section 1 (LG1): APGWamide:
427.7, 428.7, 428.8, 428.9, 429; CP3: 1124.8; left cerebral
ganglia section 2 (LG2): APGWamide: 427.7, 428, 428.7,
428.9; CP3: 1124.7, 1124.8; cerebral commissure (CC):
APGWamide: 427.7, 428.7; right cerebral ganglia section 1
(RG1): APGWamide: 427.7, 428.7, 428.9, 429, 429.1; CP3:
1124.7, 1124.8; right cerebral ganglia section 2 (RG2):
APGWamide: 427.7, 428.7, 428.9, 429, 429.1; CP3: 1124.7,
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1124.8; pleuropedal ganglia middle section (PGM): APG-
Wamide: 427.7, 428.7, 428.9, 429; CP3: 1124.8, 1125.1.
Two partial-length sequences encoding the Has-

Myomodulin transcript were found in the RA/NRA SSH
library. Has-Myomodulin sequence was extended in silico
by alignment with previously discovered expressed se-
quence tags (ESTs) ([GenBank:GT277631, GenBank:
GT275969, GenBank:GT273228, GenBank:GT067419,
GenBank:GT067304]; [36,37]). The isolated final sequence
length was 1526 bp (Figure 2A, [GenBank:JN606062]),
encoding a well-conserved 297 residue prepropeptide
(Figure 2B), which was most similar to the A. californica
Myomodulin 1 prepropeptide (BLASTp E-value 2e-49)
[38]. Has-Myomodulin encodes 7 copies of PMNMLR
Lamide, two copies of ALGMLRLamide, and single
copies of each of PVNMLRLamide, ALSMLRLamide,
GGLNMLRLamide, GLNMLRLamide, and GLQMLR
Lamide. Masses matching the most commonly encoded
myomodulin PMNMLRLamide (m/z 873.1) were found in
the anterior ganglia by MALDI-TOF-MS (Figure 2C).
Observed m/z, by section, were: LG1: 872.8; RG1: 872.8,
872.9; RG2: 872.9; PGM: 872.8.
The RA/NRA SSH library revealed two partial-length

whitnin homologues, extended in silico using previously
discovered EST sequences ([GenBank:GD241801, Gen
Bank:GT276135, GenBank:GT276859]; [37,40]) to produce
a final sequence of 833 bp [GenBank:JN606063] that
encodes a prepropeptide of 114 amino acids (Figure 3A).
Has-Whitnin dibasic cleavage sites and primary structure
appear conserved (Figure 3B), with greatest similarity to
A. californica whitnin [41]. The whitnin gene has previ-
ously been referred to as the SPTR gene in Lymnaea stag-
nalis [42] and as a PKYMDT or proctolin gene in Lottia
gigantea [34]. We select here the name Whitnin to de-
scribe the gene and the entire encoded peptide, with
SPTR, ERYM and PKYMDT nomenclature here used to
describe relevant sub-regions (see Figure 3B). Post-
translational processing is predicted to produce peptides in-
cluding an SPTR homologue, the SPTR derivatives LPA
DEamide and LDEASLAAE, the conserved PKYMDT
peptide proposed as the molluscan homologue of Proctolin
[34], and a processed ERYM peptide (Figure 3B). Anterior
ganglia examination by MALDI-TOF-MS revealed masses
consistent with LPADEamide (m/z 542.6), also its
SPTR peptide precursor LPADEGRLDEASLAAE (m/z
1656.8 Da). Further masses matching a post-translationally
modified Has-ERYM peptide (MYMGICMRQSHNHFI
PYPCMRSamide); both disulphide bonded (m/z 2700.2)
and non-disulphide bonded (m/z 2702.3) versions of the
same peptide were observed (Figure 3C). By ganglia section,
observed masses were m/z: LG1: SPTR: 1656.6; ERYM
(cysteines bonded) 2699.9, 2700.9; ERYM (cysteines
unbonded): 2702; RG1: LPADEamide: 541.7; RG2:
LPADEamide: 541.6, 541.7; ERYM (linked cysteines):
2699.9, 2700; ERYM (unbonded): 2701.9, 2702; PGM:
LPADEamide: 542.8; SPTR: 1656.5; ERYM (linked
cysteines): 2699.9, 2700.9.

Neuropeptide genes have dynamic and idiosyncratic
expression profiles during the H. asinina spawning cycle
To characterise neuropeptide gene expression over the
course of the reproductive cycle, we took anterior ganglia
from freshly caught groups of male and female H. asinina
throughout their two week reproductive cycle [7,12].
These samples were collected at the same time each day
(2200), except half-day samples, which were collected at
1000. This resulted in all samples taken within 2 days
of the spawning event being taken within 1 h 45 min
of the high tide. For each time point, 4 gravid males
and 4 gravid females were sampled; with 10 time
points, 80H. asinina from Heron Island Reef were
used in this study. Analysis of transcript abundance
of seven neuropeptide-encoding genes - Has-APGWamide,
Has-Myomodulin, Has-Whitnin, Has-FMRFamide, Has-
SLP, Has-MIP and Has-HGAP - over the reproductive cycle
by qPCR revealed that each gene has a unique and sex-
specific expression profile (Figures 4, 5, 6). In general, ex-
pression profiles were consistent across individual males
and females for a given gene, although relative gene expres-
sion levels did vary between individuals. Standard errors in
Figures 4, 5, 6 depict biological variation.
Has-APGWamide transcript abundance peaked on the

day of spawning in both males and females (Figure 4A),
with all individuals surveyed having remarkably similar ex-
pression profiles. Male and female Has-APGWamide ex-
pression profiles tracked closely throughout the spawning
cycle, although males had a secondary prespawning peak
in expression on −3 d, while females had a secondary peak
on −2 d (Figure 4A; Figure 6), which resulted in a signifi-
cant difference in expression levels between the sexes
on −3 d. There were no detectable differences in male and
female expression profiles during the two days leading up
to the spawning event, and the day after (Figure 6).
Has-Myomodulin expression levels varied the most be-

tween individual males and females, and also between
sexes (Figure 4B). Male expression levels were maximal
at the time of spawning, while female expression levels
peaked twice, at −2 d and 12 h before spawning, but be-
cause of the large biological variation, one significant dif-
ference in expression was observed.
In contrast, changes in Has-Whitnin transcript abun-

dance during the semi-lunar spawning cycle were very
consistent between individual male and females, with
male expression levels reaching maximal levels over a
24 h period surrounding spawning (Figure 4C). As in
Has-Myomodulin, females had highest expression of
12 h before spawning, around when the oocytes are re-
leasing from the gonadal extracellular matrix.
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Figure 1 Characterisation of Has-APGWamide. (A) Nucleotide and predicted amino acid sequence of Has-APGWamide (nucleotide and amino
acids are numbered on left). A predicted signal sequence is underlined, and predicted dibasic and tribasic cleavage site residues are boxed. The
Has-APGWamide qPCR primers correspond to the nucleotides 750–771 and 830–853, identified here in bold. (B) Multiple sequence alignment of
molluscan APGWamide prepropeptide sequences. Shading to four levels shows conservation as per Nicholas et al. (1997) [33]. The start of each
H. asinina APGWamide is indicated with an asterisk. Haliotis, H. asinina [GenBank:JN606061]; Lottia, Lottia gigantea [34]; Lymnaea, Lymnaea
stagnalis ([GenBank:1811269A], [35]); Aplysia, A. californica ([GenBank: NP_001191561], [30]). (C) Schematic representation of H. asinina anterior
ganglia showing regions analysed by MALDI-TOF-MS. Representative mass peaks were identified that match APGWamide (m/z 428.9) and the
acetylated CP3 peptide Ac-TLDILEDYT (m/z 1124.8) (right). Signal, signal sequence; LG1, left cerebral ganglia region 1; LG2, left cerebral ganglia 2;
RG1, right cerebral ganglia 1; RG2, right cerebral ganglia 2; CC, cerebral commissure; PGM, pleuropedal ganglia middle; Ac, acetylation; amide,
amidation; m/z, mass to charge ratio.
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In both males and females, Has-FMRFamide expres-
sion increased from the lowest detectable levels at 36 h
prespawn to the highest levels at 12 h postspawn
(Figure 4D). Unlike males where transcript abundance
continually increased during this period, females exhib-
ited a drop in expression at the time of spawning. In
both sexes, mRNA levels dropped significantly between
12 and 24 h postspawn.
Has-SLP transcript abundance was relatively low over-

all; lowest levels of expression occurred 24 h pre- and
post-spawn in both males and females, with expression
increasing at spawning; female expression plateaued over
the 24 h period surrounding the spawning event
(Figure 5A). Has-SLP expression in females was mostly
higher during the interspawn period (+1 d to −2 d) than
during the time around spawning.
Has-MIP expression peaked in males at the time of

spawning, while in females it remained relatively constant
from −3 d to +0.5 d (Figure 5B). There was notable vari-
ation in expression levels between individual males and
females, particularly just before, at and after the spawn.
Has-HGAP expression levels were also very low through-

out the spawning cycle, with relatively high variation in ex-
pression between individuals (Figure 5C). As for Has-SLP
and Has-MIP, Has-HGAP gene expression levels were not
markedly higher over the spawning period compared to the
interspawn period.
Discussion
Unlike most molluscs and broadcast spawning marine
invertebrates, Haliotis asinina has a highly predictable
spawning cycle. Although previous studies established that
semilunar synchronous spawning in H. asinina is likely
the result of tidal entrainment of endogenous rhythms
and that these endogenous rhythms persist in captivity for
up to six weeks [7,12], the underlying molecular mechan-
isms controlling this process have not been previously
explored. In non-spawning molluscs, neuropeptides
secreted from anterior ganglia play a regulatory role
in reproduction (e.g. [17-26]). Here we demonstrate
that orthologues of these (APGWamide, myomodulin,
FMRFamide and SLP) and other (whitnin, MIP and HGAP)
neuropeptides are differentially expressed in the anterior
ganglia of H. asinina during the spawning cycle. Although
we recognise that this work is essentially correlative in na-
ture and cannot confirm corresponding alterations in pep-
tide production at this time, the described changes in gene
expression are consistent with at least some of these genes
playing a role in controlling the reproductive physiology
and spawning in this gastropod.
Post-translational processing produces peptides from
Has-APGWamide, Has-Myomodulin and Has-Whitnin
Multiple individual peptide neuromodulators are derived
from a common propeptide precursor by post-translational
cleavage and subsequent modification [43]. As for other
H. asinina neuropeptides, namely Has-SLP, Has-MIP,
Has-HGAP [44] and Has-FMRFamide [45], we dem-
onstrate here that prohormones encoded by Has-
Myomodulin, Has-APGWamide and Has-Whitnin are
processed to yield a repertoire of small neuropeptides.
The Has-Myomodulin gene encodes 7 copies of the highly
conserved PMNMLRLamide, compared to 9 to 10 copies
of the corresponding myomodulin in other characterised
gastropods [34,38,39]. PMNMLRLamide is present in 4
out of 6H. asinina ganglia regions, indicating widespread
anterior ganglia expression.
Has-APGWamide encodes 10 APGWamide peptides,

similar to the 9 to 10 found in L. stagnalis, A. californica
and L. gigantea [31,34,35]. The Has-APGWamide region
corresponding to the proposed A. californica peptide
neurotransmitter CP3 (also known as Cerebral Peptide
1; [30,31] is poorly conserved compared to other mollus-
can CP3 regions. However, masses consistent with
APGWamide and the Has-CP3 peptide (sequence Ac-
TLDILEDYT) have been detected by MALDI-TOF-
MS, thus supporting our predicted processing model.
The detection of APGWamide in all anterior ganglia,
and of Has-CP3 in all regions except the CC, indi-
cates that these peptides are widely distributed in the
anterior ganglia.
In comparison to APGWamide and myomodulin,

whitnin is relatively poorly studied in molluscs (see
[34]); a homologue is present in the annelid leech Hirudo
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Figure 2 Characterisation of Has-Myomodulin. (A) Nucleotide and predicted amino acid sequence of Has-Myomodulin (nucleotide and amino
acids are numbered on left). A predicted signal sequence is underlined and predicted monobasic and dibasic cleavage sites are boxed. Predicted
myomodulins cleaved from the precursor are shaded. Has-Myomodulin qPCR primers described in Table 1 correspond to nucleotides 1034–1057
and 1122–1144, here shown in bold. (B) Multiple sequence alignment of molluscan myomodulin prepropeptide sequences. Shading is to 4 levels,
and indicates conservation as described in Nicholas et al. (1997) [33]. Asterisks indicate the start of H. asinina myomodulins. Haliotis, H. asinina
[GenBank:JN606062]; Lottia, Lottia gigantea (Joint Genome Institute, Protein ID 159404); Lymnaea, Lymnaea stagnalis ([GenBank:X96933]; [39]);
Aplysia, A. californica ([GenBank:S64300], [38]). The C-terminal Q has been removed from the Aplysia sequence. (C) Schematic representation of
H. asinina anterior ganglia showing regions analysed by MALDI-TOF-MS. Identification by MALDI-TOF-MS of the most commonly encoded
myomodulin PMNMLRLamide in regions of H. asinina anterior ganglia. Peak shown is representative of PMNMLRLamide (m/z 872.9) (right).
Signal, signal sequence; LG1, left cerebral ganglia region 1; LG2, left cerebral ganglia 2; RG1, right cerebral ganglia 1; RG2, right cerebral ganglia 2;
CC, cerebral commissure; PGM, pleuropedal ganglia middle; amide, amidation; m/z, mass to charge ratio.

York et al. Frontiers in Zoology 2012, 9:9 Page 7 of 16
http://www.frontiersinzoology.com/content/9/1/9
medicinalis [46]. The post-translational processing of the
L. stagnalis whitnin yielded two peptides - SPTR and
ERYM - with two further probable intervening peptides
[42]. Veenstra (2010) [34] posits that one of those inter-
vening peptides – PKYMDT, which follows the SPTR
region - may be the molluscan Proctolin homologue.
Encoded peptide positions within the Has-Whitnin
propeptide appear to be conserved, although PKYMDT
peptide was not detected by MALDI-TOF-MS in the
current study.
The L. stagnalis SPTR peptide is located between the

signal peptide and the first conserved dibasic cut site,
and is cleaved from the propeptide in an unmodified
form [42]; the SPTR model appears to be conserved
(cf. A. californica, L. gigantea). The evident Has-Whitnin
propeptide cleavage at Arg31, and subsequent C-terminal
amidation of the resulting LPADEG peptide to form the
novel LPADEamide, is detected by MALDI-TOF-MS in 3
out of 6 anterior ganglia regions (RG1, RG2 and PGM).
The detection of an uncleaved SPTR peptide in two
regions examined (LG1 and PGM) likely represents im-
mature peptide, although we cannot exclude the possibil-
ity that the H. asinina SPTR peptide is secreted and has a
function discrete from that of LPADEamide.
The L. stagnalis ERYM peptide is C-terminally amidated,

with a single internal disulphide bond [42]. Amidated
H. asinina ERYM peptide are present in three anter-
ior ganglia (LG1, RG2, and PGM), consistent with the
L. stagnalis model. The detection of non-disulphide
bonded, amidated ERYM versions (LG1 and RG2)
likely represents either artifactual reduction of the di-
sulphide bond during MALDI-TOF-MS or an imma-
ture form of the ERYM peptide.
Upregulation of Has-APGWamide, Has-Myomodulin,
Has-Whitin and Has-FMRFamide around oocyte
maturation or spawning
All seven neuropeptide genes analysed in this study are dif-
ferentially expressed across the semilunar spawning cycle of
H. asinina, with most having the lowest levels of expression
prior to and after spawning, and high expression levels oc-
curring at, just before or just after spawning (Figure 6).
That said, no two gene expression profiles were the same,
and expression levels relative to the consistently-expressed
reference genes varied markedly, from less than 0.05 times
the reference genes (Has-HGAP) to nearly 90 times the
reference genes (Has-Whitnin).
The increase in expression of Has-APGWamide at the

time of spawning in male and female H. asinina is
consistent with the established role of APGWamide
in molluscan reproduction, particularly its control of mus-
cles in both male and female gonads and sex organs
[17,18,47-49]. The peak in H. asinina female expression at
spawning, taken together with observations in other mol-
luscs, suggests that APGWamide may contribute to the
modulation of the induction and regulation of female
spawning. Female H. asinina spawn with numerous
distinct contractions over a period of approximately
5–15 minutes (personal observations). Based on known
functions [49], we speculate that APGWamide may be
involved in muscle relaxation between contractions. The
observed role of APGWamide in triggering spawning in
H. asinina males [27] may also relate to muscle relaxation
between spawning contractions.
Has-Myomodulin expression in the anterior ganglia of

male and female H. asinina varies markedly between
individuals, which made it difficult to detect significant
differences in expression between stages of the spawning
cycle. Nonetheless, anterior ganglia expression peaks at
the time of spawning in males and when oocytes dissoci-
ate from the female ovary (−0.5 d). Although it is un-
clear what the precise role of Has-Myomodulin has in
reproduction, in other molluscs myomodulins have a
well-established role in neuromodulating a variety of re-
productive processes [21,23,25]. Myomodulins also have
a well-documented role in feeding [50-55]. Interestingly, we
have previously shown that expression of Has-Myomodulin
in the anterior ganglia is also correlated with feeding status
in aquaculture [36]. Indeed, variation in individual foraging
success may explain the high individual variation in expres-
sion of this gene in this study. However, as all animals were



Figure 3 Characterisation of Has-Whitnin. (A) Nucleotide and predicted amino acid sequence of Has-Whitnin (nucleotide and amino acids are
numbered on left). A predicted signal sequence is underlined. Predicted monobasic and dibasic basic cleavage sites are boxed. Predicted
peptides cleaved from the precursor are shaded. Putative disulphide bonded cysteines within the predicted ERYM peptide are circled.
Nucleotides 246–269 and 399–423, in bold, correspond to the Has-Whitnin qPCR primers. (B) Multiple sequence alignment of H. asinina Whitnin
prepropeptide with molluscan homologues. The 4-level shading indicates conservation, as detailed in Nicholas et al. (1997) [33]. Haliotis, H. asinina
GenBank:JN606063; Lottia, Lottia gigantea [34]; Lymnaea, Lymnaea stagnalis ([GenBank:AAF36485]; [42]); Aplysia, A. californica ([GenBank:AAV84472];
[41]). (C) Schematic representation of H. asinina anterior ganglia showing regions analysed by MALDI-TOF-MS. MALDI-TOF-MS detection of
predicted Has-Whitnin gene products in regions of H. asinina anterior ganglia. Asterisks indicate that masses consistent with both disulphide
bonded and non-disulphide bonded versions of the predicted ERYM peptide were found in LG1 and RG2. Peaks shown represent LPADEamide
(m/z 541.7), SPTR (m/z 1656.6), and ERYM with disulphide bonded cysteines (m/z 2699.9) (right). Signal, signal sequence; LG1, left cerebral ganglia
region 1; LG2, left cerebral ganglia 2; RG1, right cerebral ganglia 1; RG2, right cerebral ganglia 2; CC, cerebral commissure; PGM, pleuropedal
ganglia middle; amide, amidation; m/z, mass to charge ratio.
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Figure 4 Quantitative PCR expression profiles of neuromodulators during the H. asinina reproductive cycle. (A-D) Relative gene
expression in anterior ganglia during the reproductive cycle of male and female H. asinina. N = 4 anterior ganglia/data points for male or female
as relevant. Error bars represent standard error of the mean. Asterisks indicate a significant difference in expression between genders for the
indicated timepoint. Notable events during the spawning cycle are indicated: D, dissociation of Cohort I oocytes from trabeculae; G, germinal
vesicle breakdown at onset of oocyte maturation; S, time of spawn; V, vitelline envelope appears around the developing, almost full size, Cohort I
oocytes. Heat maps (right) indicate level of significance (P< 0.05) for comparisons of gene expression between gender/timepoint groups by
Tukey’s HSD test. Background blue cells indicate male, green cells indicate female, aqua cells indicate corresponding time points between males
and females. Significant differences in expression are indicated: yellow cells P< 0.05; orange cells P< 0.01; red cells P< 0.001. Day of spawn is
highlighted in grey.
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Figure 5 Quantitative PCR expression profiles of growth-related neuropeptides during the reproductive cycle. (A-C) Relative expression
of indicated genes in H. asinina male and female anterior ganglia over the reproductive cycle. N = 4 anterior ganglia/data point for male or
female as relevant. Error bars display standard error of the mean. Indicated notable spawning cycle events are as per Figure 4. Heat maps (right)
indicate significant differences in gene expression between gender/timepoint groups, as per Figure 4.
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collected from the wild, pre-experiment feeding regimes
were not known.
We observed many significant differences in Has-

Whitnin gene expression over the reproductive cycle in
both males and females. As the relative expression level of
Has-Whitnin correlates tightly with the stage of the
spawning cycle, this gene may be an excellent expression
marker for the spawning cycle. Given the established neu-
romodulatory role of whitnin-derived peptides [34,42,56],
we suggest that Has-Whitnin contributes to the control of
reproduction. Has-Whitnin expression in female H. asinina
peaks 12 hours prior to spawning, at which time oocytes
release from the gonadal trabeculae [12]. In contrast,
male expression peaks at time of spawn. These and other
sex-specific differences in Has-Whitnin gene expression in
the reproductive cycle suggest a gender-specific role for
this gene.
FMRFamide is widely distributed in the animal king-

dom. Its function is diverse, and includes modulation of
feeding behaviour [57], retinal response to light [58],
sexual maturation [58], apoptosis [59], osmoregulation
[60-63], and regeneration [64-66]. Has-FMRFamide [45]
expression levels change dramatically over the semilunar
spawning cycle, and between males and females. The
gender-specific reproductive roles of FMRFamide in
closely related molluscs [17,67-72] provides a compelling
argument that Has-FMRFamide is a reproduction-related
gene. In particular, the peak in female Has-FMRFamide



Figure 6 Comparison of quantitative PCR expression profiles
surrounding the spawning event. Male expression shown in blue
(N= 4 anterior ganglia/data point), female expression shown in red
(N= 4 anterior ganglia/data point). Error bars display standard error
of the mean. Asterisks indicate a significant difference in expression
between genders for the indicated timepoint. Tidal cycle is shown;
all timepoints were taken at high tide.
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expression at −0.5 d, followed by a notable reduction at
time of spawn, is consistent with known reproductive
roles of FMRFamide in other molluscs.
FMRFamide has a demonstrated role in the inhibition of

egg-laying in the molluscs L. stagnalis and A. californica;
it prevents secretion of the hormones that trigger egg lay-
ing [67,69]. We suggest that the peak in Has-FMRFamide
expression at Day −0.5 may reflect H. asinina use of
FMRFamide to inhibit precocious spawning. The subse-
quent drop in female expression at time of spawn, which
is highly consistent among individuals, is consistent
with this proposition. Such FMRFamide-mediated in-
hibition of gamete release has so far been demon-
strated to pertain only to females. Indeed, given that
L. stagnalis and A. californica are hermaphroditic and
produce male and female gametes at different times
[9,10], it can be assumed that there exist discrete mechan-
isms for male and female gamete release. The presence of
a female peak and lack of a corresponding male peak in
Has-FMRFamide expression at Day −0.5 is therefore
consistent with the notion that FMRFamide is a func-
tionally conserved temporal regulator of female, but
not male, gamete release in gastropods. There is a
peak in both male and female FMRFamide expression
at 0.5 d, which may reflect a role for FMRFamide in
recovery from spawning and regeneration of the
gonad. In females, phagocytosis of unspawned mature
oocytes and the rebuilding of trabeculae are underway
at this time [12]. FMRFamide is known to be involved
in regenerative processes, including the acceleration
of healing [64,65], stimulation of protein and nucleic
acid synthesis [73], neural regeneration [66], and the
regulation of apoptosis [59].
The biological significance of the marked and transient

decrease in Has-FMRFamide, Has-APGWamide, Has-
Myomodulin (female only), Has-Whitnin and Has-HGAP
(male only) expression levels 36 h before spawning
(Figure 6) is unknown. This general decrease in expression
corresponds to the morning high tide the day before the
spawning event and may signify some time-keeping mech-
anism linked to a threshold tidal level and endogenous
rhythms, as previously proposed [7]. In the next 24 h, the
oldest cohort of oocytes in the ovary will undergo germi-
nal vesicle breakdown and dissociate from ovary trabecu-
lae, ready to be spawned [12]. Interestingly, a consistent
drop in gene expression in these and the other genes
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occurs one day after the spawn (Figure 6) suggesting that
this might be another time-keeping event, triggering the
synchronisation of oogenesis and possibly spermatogen-
esis for the next spawning event in approximately two
weeks. The maintenance, for at least a month, of the syn-
chronous spawning cycle in H. asinina that have been
removed from the natural environment [7] indicates en-
dogenous signals can maintain rhythmicity without expos-
ure to tide or lunar cycle.

Has-SLP, Has-MIP and Has-HGAP exhibit variable but low
expression levels during the spawning cycle
Has-SLP, Has-MIP and Has-HGAP exhibit expression
profiles similar to that observed for the other neuro-
peptide genes, with lowest levels of expression tending
to be 2 days before and a day after the spawning event
(Figure 6). However, Has-SLP, Has-MIP and Has-HGAP
are expressed at much lower levels than the other four
genes, and do not exhibit such large differences in tran-
script abundance between spawning and interspawning
stages. Together, these observations are consistent with
these three neuropeptide genes having a less important
role in controlling spawning.
Schistosomin inhibits molluscan reproduction by

inhibiting the production and secretion of female re-
productive hormones [20,74-77]. This role appears to
be conserved in gastropods that copulate (L. stagnalis,
L. ovata, Biomphalaria glabrata, Biomphalaria pfeifferi,
and Bulinus truncatus) [20,74-79]. Other non-reproductive
roles for schistosomin also have been postulated, including
promotion of growth via triggering the secretion of MIP
[20,79] and in larval development [80,81]. In H. asinina, a
gene encoding a schistosomin-like peptide (Has-SLP) was
recently isolated and found to be upregulated in fast-
growing juvenile abalone [44]. The high expression of Has-
SLP in the interspawn period reported here is consistent
with a conserved role for Has-SLP in the inhibition of fe-
male reproductive processes. Based on expression profiles
(Figure 6), Has-SLP may play a different role in males
than in females, although details of this are unknown
at this time.
Molluscan insulin-related peptides (MIPs) are mollus-

can peptide hormones thought to promote growth and
regulate nutrient uptake [19,20,82-86]. There is an estab-
lished relationship between the reproduction-related
hormone schistosomin and MIP release: L. stagnalis
schistosomin causes MIP release, resulting in growth
of the animal [20]. However, we have found that the
Has-MIP gene is down-regulated in fast growing ani-
mals compared to slow growers [44]. In the present study,
Has-MIP expression did not vary markedly through the
spawning cycle, although there was a decrease in tran-
script abundance at −1.5 and +1 d, as observed for many
of the other genes. Interspawn expression levels were high
or similar to the expression levels around the time of
spawning, suggesting a minor role for this peptide in the
control of spawning

The HGAP gene was first found in a H. asinina anterior
ganglia SSH library created from well-nourished against
food-deprived animals ([36]; [GenBank:GT067343]). Fur-
ther characterisation has revealed that Has-HGAP
encodes a double-chain secreted peptide and is expressed
in all tissues examined except the gill [44]. To date, HGAP
has only been found in H. asinina. Although it is un-
known whether Has-HGAP actively promotes growth as a
regulatory hormone, Has-HGAP expression is upregulated
in fast growing H. asinina compared to slow growing indi-
viduals [44]. Has-HGAP expression overall is the lowest of
all genes surveyed in this study and, as for Has-MIP, is
highest during interspawn periods. In the case of both
these genes, there was marked individual variation in ex-
pression levels, rendering it difficult to infer much from
these expression profiles.

Conclusions
We report here the sequences of the neuromodulator-
encoding genes Has-APGWamide, Has-Myomodulin and
Has-Whitnin, and describe the post-translational proces-
sing of their encoded peptides. Comparisons to molluscan
orthologues indicate that processing of the proneuropep-
tides is well conserved in all cases. QPCR analysis
reveals that expression in the anterior ganglia of Has-
APGWamide, Has-Myomodulin and Has-Whitnin, as
well as another neuromodulator-encoding gene Has-
FMRFamide, varies across the H. asinina reproductive
cycle. Peaks in the expression levels of these genes
correspond to events associated with spawning, in-
cluding oocyte maturation and dissociation from the
ovary. Perhaps most notably, Has-FMRFamide expres-
sion, along with Has-APGWamide, Has-Myomodulin
and Has-Whitnin, is suggestive of a synchronisation
mechanism in the reproductive cycle, 36 hours prior
to spawning. The temporal map of expression of the
seven candidate reproduction-related genes provided
in this study will assist future endocrinological studies
into molluscs and other marine invertebrates that
synchronously release their gametes in a broadcast
spawning event. In particular, this study presents a
range of neuropeptide candidates to investigate the
control of spawning in species with less tractable and
predictable spawning, including those of commercial
importance.

Materials and Methods
Animals
Adult male and female H. asinina (gravid and ranging
from approximately 12 to 20 cm in length) that were used
for the gene expression analyses were collected from



Table 1 Oligonucleotide primers for qPCR

Target gene Primers Tm

(F = forward and R= reverse)

Has-APGWamide F: TCTGAGGCTGGGAGATCAAAGG 68°C

R: ACGTGTTTGGGAACATCCAGTAGG

Has-Whitnin F: CACGCCAAGAGGACTTTGAGATGG 68°C

R: GGGTATGGGATGAAGTGGTTGTGTG

Has-Myomodulin F: ACGGTCGGACGAGAAAGTTGATGG 68°C

R: TGATGGGTTTGTTGGGAGGGATG

Has-FMRFamide F: TTCGGGAAGCGAGATTCTGGTG 68°C

R: GGTGGATGTGAAACAGCGAACAGTC

Has-SLP F: TCGTCCTCATCGCTCTCGTTGTT 69°C

R: GGAGCCGTTGGAAATGCAGAAG

Has-MIP F: CAAGCGGACGAGTGAACAAGG 67°C

R: TTGCTCTTACAGCGTCTAGCATGG

Has-HGAP F: CTGTGCATTCTCCTTGTCGTAGTCG 68°C

R: GCTCATGTAGCCGAATGATTCTTCC

Reference genes

(Williams et al., 2009)

Has-Ubiquitin F: TGGCAAGCAGTTGGAAGATGGT 57°C

R: CAGTTGTACTTGGAGGCCAGGAT

Has-NACA F: TGTCGCAAGCCAACGTTTCA 57°C

R: GACAGCATGTTCAGCACTGGT

Has-DAu1506 F: AGATGCGTGTATGCTGGAGT 57°C

R: TGGGTACATGCCAATGCT
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Heron Island Reef (Queensland, Australia) under permit,
and kept in flow-through seawater tanks with water
obtained from the reef flat from where the abalone were
collected. For the analysis of gene expression during the
spawning cycle, abalone were collected no more than three
days before sacrificing. Animals used for peptidomic ana-
lyses were collected from Heron Island reef and transported
to Bribie Island Research Centre (Queensland Primary
Industries and Fisheries, Department of Employment,
Economic Development and Innovation), and kept in
an inside tank with a 12-hour light/dark cycle. Collected
animals were fed to satiety on local algae from Heron
Island Reef. Animals housed at Bribie Island Research
Centre were fed to satiety with Gracillaria edulis, and an
artificial food purchased from Adam & Amos Abalone
Foods Pty. Ltd. [87].

Sequence isolation, extension, identification and analysis
RNA isolation, cDNA synthesis and amplification, SSH,
cloning, sequencing, and in silico sequence extension
were carried out as described in York et al. 2010 [36].
SSH utilised anterior ganglia from two reproductively
active (RA) and two non-reproductively active (NRA)
adult H. asinina as Tester and Driver samples, respect-
ively. Where appropriate, the SMART™ RACE cDNA
Amplification Kit (Clontech, Mountain View, California)
was used to obtain entire coding sequence, as per manu-
facturer’s protocols.
To identify related sequences, a BLASTx search against

the NCBI database [88,89] was performed, with a
stringency cutoff e-value of 10-6. Neuropeptide post-
translational processing was predicted from translated se-
quence using the NeuroPred [90,91], SignalP [92,93] and
SIG-Pred [94] programs. Multiple sequence alignments
were done with the Molecular Evolutionary Genetics
Analysis software version 4.0 program (MEGA4) [95],
using the ClustalW algorithm [96]. Shading of multiple
sequence alignments was performed using GeneDoc
Version 2.7.000 [33].

Matrix-Assisted Laser-Desorption/Ionisation-Time of Flight
Mass Spectrometry (MALDI-TOF-MS)
MALDI-TOF-MS was performed as described in Cummins
et al. (2009) [32]. Briefly, anterior ganglia were removed
from 14-month old H. asinina, rinsed in aqueous MALDI-
TOF-MS matrix solution [20 mg/ml 2,5-dihydroxy
benzoic acid (Sigma-Aldrich, St. Louis, Missouri) in
30% acetonitrile/0.1% trifluoroacetic acid], sectioned, and
desheathed. Each section was then torn into tiny fragments
in matrix solution using dissection forceps. Tiny fragments
(< 1 mm) of each section were placed on a MALDI-TOF-
MS plate in 0.5 μL matrix solution. A Voyager-DE STR
Biospectrometry Workstation (Applied Biosystems, Foster
City, California), with N2 laser and pulsed ion extraction
accessory was used to analyse the fragments, with 500 shots
in reflectron mode. Masses were taken as identified if
within 1 Da of predicted average mass.

Reproductive cycle expression analysis of selected genes
by qPCR
For each point in the time series, anterior ganglia were
dissected from 4 anaesthetised male and female abalone,
each which was haphazardly chosen from the pool of pre-
viously collected gravid adults, and stored in RNALater
at −80°C as previously described [36]. Total RNA was
extracted using Tri Reagent (Sigma-Aldrich, St. Louis,
Missouri), and reverse transcribed using SuperScript III
Reverse Transcriptase (Invitrogen, Carlsbad, California),
as per manufacturers’ instructions. Oligonucleotide pri-
mers for qPCR were either those used in previous studies
[36,44], or were designed using the Primer3 program
[97,98] (Table 1). Relative transcript abundance in an-
terior ganglia was measured between male and female
time points taken throughout the course of the 14-
dayH. asinina reproductive cycle using a Roche
LightcyclerW 480 II qPCR machine with LightcyclerW 480
SYBR Green I Master (Roche, Penzberg, Upper Bavaria).
The reference genes Has-UEST1506, Has-NACA, and
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Has-Ubiquitin were selected from a pool of potential
reference genes [40,44] using the geNorm program [99].
Reference gene validity was also manually confirmed by
visual examination of non-normalised, raw qPCR expres-
sion data. Normalisation of expression was done using the
Relative Expression Software Tool for Rotor-Gene 3000
and 6000, Version 3 [100]. To authenticate differences in
expression between gender/time point groups, two-
way ANOVA and Tukey’s HSD tests were performed
using the R program [101], with P-values of 0.05 or
lower taken as significant.

Availability of supporting data
The data sets supporting the results of this article are
included within the article.
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