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season and semi-lunar spring tides in a
ground-nesting shorebird
Silvia Plaschke1, Martin Bulla2,3,4*†, Medardo Cruz-López5, Salvador Gómez del Ángel5 and Clemens Küpper1,2*†

Abstract

Background: Marine and intertidal organisms face the rhythmic environmental changes induced by tides. The
large amplitude of spring tides that occur around full and new moon may threaten nests of ground-nesting birds.
These birds face a trade-off between ensuring nest safety from tidal flooding and nesting near the waterline to
provide their newly hatched offspring with suitable foraging opportunities. The semi-lunar periodicity of spring
tides may enable birds to schedule nest initiation adaptively, for example, by initiating nests around tidal peaks
when the water line reaches the farthest into the intertidal habitat. We examined the impact of semi-lunar tidal
changes on the phenology of nest flooding and nest initiation in Snowy Plovers (Charadrius nivosus) breeding at
Bahía de Ceuta, a coastal wetland in Northwest Mexico.

Results: Using nest initiations and fates of 752 nests monitored over ten years we found that the laying season
coincides with the lowest spring tides of the year and only 6% of all nests were flooded by tides. Tidal nest
flooding varied substantially over time. First, flooding was the primary cause of nest failures in two of the ten
seasons indicating high between-season stochasticity. Second, nests were flooded almost exclusively during the
second half of the laying season. Third, nest flooding was associated with the semi-lunar spring tide cycle as nests
initiated around spring tide had a lower risk of being flooded than nests initiated at other times. Following the
spring tide rhythm, plovers appeared to adapt to this risk of flooding with nest initiation rates highest around
spring tides and lowest around neap tides.

Conclusions: Snowy Plovers appear generally well adapted to the risk of nest flooding by spring tides. Our results
are in line with other studies showing that intertidal organisms have evolved adaptive responses to predictable
rhythmic tidal changes but these adaptations do not prevent occasional catastrophic losses caused by stochastic
events.

Keywords: Charadrius nivosus, Nest flooding, Ground-nesting shorebirds, Nest initiation schedule, Semi-lunar cycle,
Snowy plover, Spring tide rhythm

Introduction
All living organisms, from the simplest prokaryote to the
most complex eukaryote, face the rhythmic changes of
the Earth’s periodic environment. The tidal, daily, sea-
sonal, as well as multiyear environmental periodicities
are almost exclusively induced by the movements of the

Earth relative to the Sun and the movements of the
Moon relative to the Earth [1]. Organisms that align
their physiology and behaviour to these persistent envir-
onmental cycles can enhance their survival and repro-
ductive success [2–5].
Moon-driven environmental cycles such as lunar illu-

mination and raising and falling of sea water levels
(tides) vary in their periodicity (Fig. 1). Lunar illumin-
ation changes over 24.8 h (the lunar day with the Moon
rotating once around the Earth) and over 29.5 days (the
lunar month when the Moon cycles once through its
phases). Correspondingly, sea levels rise and fall every ~
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12.4 h (tidal cycle), maximum and minimum high tides
(i.e. spring and neap tides, respectively) occur once dur-
ing every semi-lunar cycle (~ 14.75 days) around new
and full moon (spring tides) or around half moon, i.e.
the Moon’s cycle’s 1st and 3rd quarter (neap tides). Con-
sequently, a multitude of biological functions, including
oxygen consumption, foraging activity, or reproduction,
follow tidal and/or lunar cycles in a broad array of or-
ganisms [1, 6–13].
The organisms breeding in intertidal wetlands are sub-

ject to predictable flooding caused by high tides. Organ-
isms shall be well adapted to such rhythmic daily and
semi-lunar flooding. However, tide heights are also mod-
ulated by weather conditions. For example, onshore
winds will push the waterline further inland. Occasion-
ally, this may lead to extreme and unpredictable flooding
events, especially during periods of rough weather [10,
14–20]. How do organisms adapt to the risk of nest
flooding? There are two main mechanisms, spatial and
temporal adaptation. First, for spatial adaptation, indi-
viduals may choose sites that are perceived as safe from
flooding for both them and their offspring. For example,
some ground-nesting birds construct elevated nest
mounts or select elevated nest sites that won’t be
reached by spring tides during the breeding season [10,
15, 17, 18, 20]. Such elevated nests, however, may make
nests more conspicuous to predators [17, 20, 21]. Alter-
natively, parents may select nest sites far away from the
highest tide line. This may reduce the risk of flooding
but increases the distance to favourable foraging sites for
parents and offspring [22]. In addition, sites far away
from the highest tide line tend to have higher vegeta-
tion, which may hinder early visual detection of pred-
ators [23].

Second, for temporal adaptation, tidal organisms may
time their reproduction to periods when conditions are
favourable for their offspring [12, 24]. For example, for
terrestrial ground-nesting organisms initiating nests
right after spring tides will typically reduce nest vulner-
ability to flooding since these nests may be exposed to
fewer spring tides and the nests are placed above the
current highest tide line. In contrast, parents that initiate
nests during neap tides will lack information about the
highest tide line and hence their nests should be more
vulnerable to spring tide flooding.
Whereas spatial adaptation in relation to tidal flooding

is reasonably well studied, temporal adaptation of nest-
ing has received less attention [10, 25], and the available
studies lack statistical models that take the circular
properties of tidal rhythms into account (but see [20]).
Here, we investigate temporal dynamics of nest

flooding and nest initiation in relation to spring tide
cycle in the Snowy Plover (Charadrius nivosus). This
ground-nesting shorebird breeds in open sparsely veg-
etated habitat at Pacific and Gulf coasts and interior
salt flats of North and South America [26, 27] where
it frequently experiences tidal flooding and/or rough
weather events [14, 28–32]. The nesting period, i.e.
the period between first egg laid and last chick
hatched, varies but typically lasts about 32 days ([27];
CK, MC-L, SGA unpublished data) meaning that
nests are typically exposed to two spring tides. Incu-
bation is shared by male and female but shows sub-
stantial geographic variation in length and parental
cooperation [27, 33–35]. The precocial chicks leave
the nest scrape within a few hours after hatching and
the family then moves to a brood territory typically at
the shore often several kilometers away from the nest.

Fig. 1 Variation in tide heights during a lunar month. Spring tides occur shortly after new and full moon, twice during a lunar month. During
spring tides the Sun and Moon are aligned and their combined gravitational forces lead to the largest difference between high and low tide
resulting in particularly high water lines at high tides. In contrast, neap tides occur shortly after the first and third quarter of the Moon. During
neap tides, the gravitational forces are at minimum leading to the smallest difference between high and low tide
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Specifically, we collected data on nest initiation and
fates of 752 Snowy Plover nests over ten years at Bahía
de Ceuta, a tidal wetland in Northwest Mexico. At this
site, the laying season of Snowy Plovers, here defined as
the period between first and last initiated clutch in a
given year, starts when the breeding grounds are laid
bare by receding water and ends when rising tidal ampli-
tude and rain flood the breeding grounds [14, 36].
Throughout the laying season tide height is increasing.
However, increasing seasonal temperatures lead to high
evaporation and a net loss of surface water from April
until the start of the rain season. As a consequence, the
water body and with it the nesting plovers recede to-
wards areas in the northwest that still provide access to
water but these areas are more susceptible for tidal
flooding (CK, MCL, SGA personal observations.
To examine the relationship between the semi-lunar

cycle, nest flooding and initiation in this population we
tested the following five predictions (Fig. 2). (1)
Between-year nest flooding will be stochastic because
tidal amplitude varies with weather conditions, and

rough weather hits coastal areas stochastically over years
[19, 37]. (2) Late nests will be more likely flooded than
early nests because the tidal amplitudes increase
throughout the laying season and because rough wea-
ther, and hence unusually high tides, are more common
at the end of the season at this site (CK, MCL, SGA per-
sonal observations). (3) Nests initiated around spring
tide will be less likely flooded than nests initiated around
neap tide. This is because parents experience how far
the water line advances around spring tides and can
choose their nest location accordingly. (4) If flooding
risk varies throughout the spring tide cycle, adaptive
nest initiation will show a similar periodicity as the
semi-lunar spring tide cycle with nest initiation peaking
around spring tides and reduced nest initiation around
neap tides. (5) This semi-lunar periodicity in nest initi-
ation will be stronger early and weaker late in the season
as early plovers can optimally time their nest initiation
whereas late plovers are more rushed to complete the
nesting before the end of the laying season as the nest-
ing areas will get completely flooded shortly after the
start of the rain season.

Methods
Data collection
We monitored a population of Snowy Plovers breeding
at Bahía de Ceuta, a tidal wetland in Northwest Mexico
(23.9° N, 106.95° W), between 2006 and 2016, with ex-
ception of 2014. From April to July 70 to 200 plovers
breed on the salt flats. We searched for nests by identify-
ing incubating or nest-building parents with binoculars
and/or spotting scopes from a car or mobile hide [38].
Upon finding, we recorded nest position with a hand-
held GPS, noted clutch size and floated the eggs in luke-
warm water to determine their age based on the stage of
the youngest egg [38]. This method determines the onset
of incubation up to a clutch age of ten days. We trapped
adults on nests using funnel traps and marked them
with a unique combination of metal and colour rings
(e.g. [14, 39]. We determined the sex of parents based
on plumage differences and differences in capture time
[27, 34]. For all birds captured between 2006 and 2012,
the phenotypic sexing was confirmed by molecular ana-
lysis (details given in [34]).
We visited nests every three to five days until incuba-

tion day 20 and at least once every 48 h thereafter to de-
termine nest fate, i.e. hatched, depredated, flooded,
abandoned, or unknown. We further differentiated nests
presumably flooded by tides, i.e. nests that failed because
they were covered by surface water (hereafter ‘flooded’)
from nests drowned by rainfall, i.e. nests found flooded
just after heavy rainfall.
We defined ‘nest initiation’ as the day when the first

egg was laid whereas the ‘onset of incubation’ as the day

Fig. 2 Schematic representation of predictions for nesting
phenology of Snowy Plovers at Bahía de Ceuta, Mexico. Numbers
(1–5) indicate each prediction. Stochastic extreme weather events
that occur in some years but not in others lead to unpredictable
high spring tides (dotted grey line) causing between-year variation
in nest flooding (1). Rising daily tide heights (undulating blue line)
over the course of the laying season increase flooding of nests laid
later in the season (2). Nests initiated around spring tide have a
lower flooding risk than those initiated around neap tide because
parents can place the nest in a safe distance from the highest water
line (3). Semi-lunar variation in nest flooding will lead to adaptive
nest initiation patterns that follow the semi-lunar spring tide cycle
with more nests initiated around spring tide and less around neap
tide (4). The semi-lunar periodicity in nest initiation will weaken as
the season draws to its end since parents are pressed for time as
the breeding site will be flooded at the end of the breeding
season (5)
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when the last egg was laid. We assumed a 5 day period
for females to complete a three-egg clutch and a 3 day
period to complete a two-egg clutch [27]. We further as-
sume a 25-day long incubation period. This is based on
51 hatched nests that we found during laying (median
[range] = 25 [23 to 29] days) and matches the incubation
period assumed in earlier studies [36, 40]. Thus, if a nest
was found during egg laying (N = 93) or was found with
a complete clutch that was 10 days old or younger (N =
616), we estimated its nest initiation based on the clutch
size and the age of the youngest egg. One three-egg
clutch was found with one egg but lacked floating infor-
mation and we assumed that the egg was laid the day
before finding it. We calculated nest initiation of 25
clutches found with an incubation age of 11 days or
older and of further 18 hatched clutches based on their
hatching dates. Thirteen failed nests found with an incu-
bation age of 11 days or older were excluded from the
analysis because we could not determine their nest initi-
ation. This resulted in 746 nests with records for all vari-
ables of interest (i.e. nest coordinates, clutch size, nest
initiation and fate, sex and identity of the parents). For
further six nests with missing nest locations we imputed
their coordinates using the median latitude and median
longitude of the nests laid ± 5 days around the nest initi-
ation date of the given nest as imputation rather than an
exclusion of cases with missing data increases the preci-
sion of the analysis [41]. The final clutch size was three
eggs in 652 nests (86.7%), two in 78 nests (10.4%) and
one egg in 22 nests (2.9%).
We downloaded the daily tide height predictions from

(ref. [42]) for the port of Mazatlán (N 23.25°, W
106.42°), the nearest location to Bahía de Ceuta with
available tide height data approximately 95 km south of
our study site. We used the highest tide height for any

given day (Fig. 3). For 10 days the highest tide height
was missing and we imputed the missing values as
the mean of highest tide heights from previous and
next days. The new and full moon data for Mazatlán
were downloaded from timeanddate.com and used to
define the dates of spring tides.

Statistical analysis
General procedures
We used R, version 3.5.1 [43] for statistical analyses
and the ‘lme4’ R-package [44] for fitting mixed-effect
models with restricted maximum likelihood. We used
the ‘sim’ function from the ‘arm’ R package and
non-informative prior-distribution [45, 46] to create a
sample of 5000 simulated values for each model par-
ameter (i.e. posterior distribution). We report effect
sizes and model predictions by the medians, and the
uncertainty of the estimates and predictions by the
Bayesian 95% credible intervals represented by 2.5
and 97.5 percentiles (95% CI) from the posterior dis-
tribution of the 5000 simulated or predicted values
[47]. We estimated the variance components with the
‘lmer’ or ‘glmer’ function from the ‘lme4’ R package
[44] and report those as the percentage of explained
random variance. We used three sets of models to in-
vestigate our five predictions. ‘Day of spring tide
cycle‘ indicates time since the last spring tide with
day one representing the day of a spring tide. To
overcome the circular properties of time whenever we
investigated effect of time within spring tide cycle, we
transformed ‘day of spring tide cycle’ to radians (2 *
π * ‘days of spring tide cycle’ / length of the given
spring tide cycle [~ 14.75 days]; note that spring tide
cycles vary in length, in our data by 1.6 days). We
then fitted the radians to sine and cosine [35]. When

Fig. 3 Between- and within-year variation in daily tide height at Bahía de Ceuta, Mexico. Each point depicts the predicted highest daily tide, its
color indicates laying season (red) or non-laying season (grey). For yearly variation of high tides across the spring tide cycle
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investigating the seasonal effect, we defined the pro-
gress of the season by 'spring tide cycle number'; the
first spring tide cycle in a given year corresponds to
the cycle when the first nest was initiated. To control
for non-independence of data points, we also speci-
fied year, spring tide cycle number and female iden-
tity as random intercepts.
We fitted all models with two different error struc-

tures: Gaussian and Non-Gaussian errors. Despite vio-
lating some model assumptions, Gaussian models
perform well on large datasets where the response
variable follows binomial or Poisson distribution [48].
Consistent with this, we observed that the Gaussian
models fitted the data better than the binomial or
Poisson models and used Gaussian models for the
graphic representation of our results but present both
models with Gaussian and Non-Gaussian errors in
the Results (Tables 1 and 2).

Temporal variation in nest flooding
In the first set of models (Table 1), we investigated predic-
tions 1 to 3 that are related to nest flooding. We used only
flooded, hatched and unhatched nests (N = 476 nests) and
specified whether the nest was flooded (1) or not (0). We
fitted ‘Year’ as a random effect to the models to investigate
prediction 1. We investigated whether flooding was re-
lated to the nest initiation date within the season (predic-
tion 2) and within the spring tide cycle (prediction 3). We
controlled for the latitudinal changes in nest initiation by
entering nest latitude as a fixed effect. We then fitted two
models, in one we specified the errors of the response as
Gaussian, in the other as binomial.

Temporal variation in nest initiation
In the second set of models (Table 2), we used all nests
(N = 752). We specified the number of initiated nests at
any given day within a laying season as response variable
and investigated how the response changed over the
semi-lunar cycle (day of spring tide cycle, prediction 4)
and with season (spring tide cycle number). In addition
to the original random structure, we also fitted part of
spring tide cycle (first or second) as random intercept.
Again, we fitted two models, in one we specified the er-
rors of the response as Gaussian, in the other as Poisson.
In the Poisson model we controlled for over-dispersion
by adding observation level as random intercept. To test
prediction 5, we fitted the very same two models, but
with interaction between ‘spring tide cycle number’ and
‘day of spring tide cycle’ (Table 2, complex models). To
ensure that nest initiation was indeed driven by pre-
dicted changes of highest daily tides, we ran a third set
of models. These models mirrored the second set, except
that we used the ‘highest daily tide height’ (in cm) in-
stead of ‘day of spring tide cycle’ as a predictor.

Results
Temporal variation in nest flooding
Of 752 initiated nests 413 hatched (55%), 20 never
hatched (3%) and only 43 nests (6%) were flooded by
tides. Consistent with our first prediction, years differed
greatly in the number of flooded nests (range: 0 to 13
nests, i.e. 0 to 39% of initiated nests) as well as in the
number of initiated nests (range: 29 to 158 nests) and
flooding was the primary reason for nest failure in two
of the ten seasons (2012 and 2015; Fig. 4). Indeed, ‘year’

Table 1 Temporal variation in nest flooding

Response – flooded (0 = no, 1 = yes) Gaussian Binomial

Model Effect type Effect Estimate 95% CI Estimate 95% CI

Complex Fixed Intercept 0.155 −0.005 0.317 −9.3 −13.4 −5.2

Nest latitude −0.078 −0.099 −0.055 −2.8 −4.4 −1.2

Spring tide cycle number 0.164 0.052 0.275 4.9 3 6.9

Cos (Day of spring tide cycle) −0.01 −0.038 0.017 −0.7 −1.8 0.4

Sin (Day of spring tide cycle) −0.03 −0.058 −0.002 −1.2 −2.2 −0.1

Random (variance) Year (intercept) 17% 100%

Spring tide cycle number (intercept) 33% 0%

Female ID (intercept) 1%

Residual 49%

The posterior estimates (medians) of the effect sizes with the 95% CIs derived from a posterior distribution of 5000 simulated values generated by the ‘sim’
function in R. Variance components were estimated by the ‘lmer’ function in R. To account for non-independence of data points, ‘Female ID’, ‘Year’ and ‘Spring
tide cycle number’ (i.e. time within the laying season) were fitted as random intercepts. ‘Spring tide cycle number’ is standardized within the year so that the first
spring tide cycle in the given year corresponds to the cycle when the first nest was initiated. This variable, as well as ‘Nest latitude’, were z-transformed (mean-
centred and divided by standard deviation). ‘Day of spring tide cycle’ was transformed to radians (2 * number of days after the last spring tide * π/length of the
given spring tide cycle [~ 14.75]) and fitted as sine and cosine of radians. Note that despite violating some model assumptions our Gaussian model fits the data
better and, unlike our binomial model, also accounts for spatial auto-correlation in residuals. The binomial model lacks female identity as random intercept
because models with female identity did not converge
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explained a substantial amount of phenotypic variance
(Tables 1, and 2). Consistent with our second prediction,
nests that were initiated later in the laying season were
more likely to get flooded than earlier nests (Figs. 4 and
5a; Table 1). Finally, consistent with our third prediction,
nests initiated around neap tides were more likely to get
flooded (average 18%, 95% CI: 2 to 35%) than nests initi-
ated during spring tides (average 12%, 95% CI: 0 to 29%;
Fig. 5b, Table 1).

Temporal variation in nest initiation
Overall, we found that the number of initiated nests
declined over the laying season (Figs. 4 and 5c, Table
2). Consistent with our fourth prediction, parents ini-
tiated more nests around spring tides (average 1.03
nests per day, 95% CI: 0.7 to 1.35) than around neap
tides (average 0.88 nests per day, 95% CI 0.55 to 1.21;
Fig. 5d, Table 2). Accordingly, parents initiated more
nests when tides were high as is the case during
spring tides. Contrary to our fifth prediction, there
was no statistically clear change in nest initiation pat-
tern over the semi-lunar cycle across the laying sea-
son (Table 2, ‘complex models’).

Discussion
Adaptation to tidal rhythms is commonly found in
organisms living in intertidal zones [12, 49]. Consist-
ent with our three predictions about temporal vari-
ation in nest flooding, we found that the nesting
ecology of ground-nesting Snowy Plovers followed
variation in tide height at three different timescales:
(1) nest flooding varied between years (Fig. 3), (2)
was more likely later in the season (Figs. 4 and 5a),
and (3) followed the semi-lunar cycle with nests initi-
ated during neap tides more likely to be flooded than
nests initiated during spring tides (Fig. 5b). Consistent
with adaptation to the semi-lunar tide changes, more
nests were initiated around the time of spring tides
than around neap tides (Fig. 5d). By contrast, our last
prediction was not supported as the strength of the
semi-lunar nest initiation rhythm did not change
clearly over the season (Table 2). Below we discuss
these findings in detail.

Temporal variation in nest flooding
The observed high between-year stochasticity in nest
flooding is consistent with findings from other avian

Table 2 Temporal variation in nest initiation

Response - # of initiated nests Gaussian Poisson

Model Effect type Effect Estimate 95% CI Estimate 95% CI

Complex Fixed Intercept 0.943 0.64 1.247 −0.302 −0.591 −0.02

Spring tide cycle number −0.195 −0.325 −0.065 −0.236 −0.375 −0.105

Cos (Day of spring tide cycle) 0.105 0.002 0.208 0.096 −0.016 0.202

Sin (Day of spring tide cycle) 0.043 −0.09 0.174 0.038 −0.103 0.176

Cos × Spring tide cycle number −0.06 −0.163 0.041 −0.048 −0.168 0.069

Sin × Spring tide cycle number 0.016 −0.122 0.147 0.019 −0.127 0.168

Random (variance) First or second half : Spring tide cycle : Year (intercept) 9% 29%

Spring tide cycle : Year (intercept) 7% 19%

Year (intercept) 13% 40%

Residual – Gaussian/Observation (intercept) - Poisson 71% 12%

Simple Fixed Intercept 1.349 0.954 1.747 0.205 −0.193 0.575

Spring tide cycle number −0.11 −0.188 −0.034 − 0.138 −0.216 −0.059

Cos (Day of spring tide cycle) 0.104 0.001 0.211 0.033 −0.114 0.171

Sin (Day of spring tide cycle) 0.04 −0.098 0.17 0.108 0.002 0.214

Random (variance) First or second half : Spring tide cycle: Year (intercept) 9% 30%

Spring tide cycle: Year (intercept) 7% 19%

Year (intercept) 13% 40%

Residual – Gaussian/Observation (intercept) - Poisson 72% 12%

The posterior estimates (medians) of the effect sizes with the 95% CIs derived from a posterior distribution of 5000 simulated values generated by the ‘sim’
function in R. Variance components were estimated by the ‘lmer’ function in R. To account for non-independence of data points ‘Year’, ‘Spring tide cycle number’
within year and indication whether the nest was initiated in the ‘First or Second half’ of the spring tide cycle were fitted as random intercepts. Overdispersion was
modelled by adding ‘Observation’ level as random intercept. ‘Spring tide cycle number’ is standardized within the year, so that the first spring tide cycle in the
given year corresponds to the cycle when the first nest was initiated. ‘Day of spring tide cycle’ was transformed to radians (2 * number of days after the last
spring tide * π/length of the given spring tide cycle [~ 14.75]) and fitted as sine and cosine of radians
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species [19, 20, 32, 37] and likely reflects the
between-year differences in extreme weather events
when spring tides coincide with onshore gales that push
the waterline further inland than regular weather. As
previously suggested [19, 20, 37], the stochasticity of
these weather events makes adaptation to changing
water levels particularly challenging. Despite these nest
losses caused by stochastic flooding events, plovers
seemed well adapted to breed in intertidal habitat as
only 6% of nests failed due to flooding (Fig. 4).

We observed a strong seasonal effect on the risk of
nest flooding. Nearly all flooding events affected nests
laid during the second part of the laying season (Fig. 4).
One potential reason for this is that tide height increases
over the breeding season and the nest distribution of the
plovers shifts towards areas that are more susceptible to
tidal flooding. Thus, late breeding plovers might trade
off nest survival with chick survival. As the high evapor-
ation in late spring leads to a retreat of the water bodies,
the chick survival of late hatching nests is greatly

Fig. 4 Number and fate of Snowy Plover nests initiated across years, laying season and spring tide cycle. Each bar represents one day, the color
of the bar indicates fate of the nest (red – flooded by tides, N = 43; grey – not flooded including nests with unknown fate, N = 709). The
undulating blue line represents the predicted highest daily tide and each hump indicates one spring tide cycle. The vertical orange line marks
the median of the nest initiation date for each year. The black dots at the bottom-right mark the years when flooding was the primary cause of
nest failure
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reduced [14] because the chicks do not find enough food
on the dry salt flats and often starve to death unless the
nest is initiated close to shoreline where the flooding
risk is higher. Another reason for the seasonal trend in
nest flooding is that tropical storms are more likely to
occur late in the season at this site (CK, MCL, SGA per-
sonal observations).
Finally, the flooding risk was associated with the

semi-lunar rhythm. Nests initiated around spring tides
were less likely to be flooded than nests initiated during
neap tides. The average flooding risk for nests initiated
during neap tide was on average 50% higher than for nests
initiated during spring tide although the uncertainty of the
estimates was high and likely caused by only 6% of nests
being flooded in this population.

Temporal variation in nest initiation
Consistent with an adaptive response to the semi-lunar
variation in nest flooding, Snowy Plovers at Bahía de Ceuta
initiated more nests around the dates of spring tides than

during the dates of neap tides (Fig. 5d). Nest initiation be-
fore and after spring tide may be adaptive for different rea-
sons. For example, nest initiation at or shortly after a spring
tide will enable the parents to pick a flood-safe nesting spot.
In contrast, initiation just before spring tide will ensure that
chicks hatch right at the spring tide and have the shortest
distance to feeding territories as the nesting period is
slightly longer than two semi-lunar cycles. Parents may use
at least two cues associated with semi-lunar periodicity to
initiate nests at a favourable time in order to reduce the risk
of nest flooding. Similar to other marine species [24, 50,
51], parents may use periodic changes in moonlight levels
to anticipate the occurrence of spring tides and time their
nesting activity accordingly. This would require the regula-
tion of reproduction in female plovers, for example,
through an endogenous circa-lunar clock [24]. To date,
such clocks have not been described in higher vertebrates
[12]. Alternatively, plovers could track the actual high tide
levels and use the associated water line directly to inform
themselves about safe nesting sites.

a b

c d

Fig. 5 Nest flooding and initiation in relation to season and spring tide cycle. a-b, Percentage of flooded Snowy Plover nests in relation to time
of the laying season, as indicated by spring tide cycle # (a), and in relation to day of spring tide cycle (b) when parents initiated their nest. Circles
represent percentage of flooded nests initiated within each spring tide cycle (a) and within each day of the spring tide cycle (b). The lines at the
top of the panels indicate Kernel-densities for non-flooded nests (grey) and flooded nests (red). N = 476 hatched, unhatched or flooded nests
initiated by 266 females over ten years and six spring tide cycles. c-d, Number of initiated nests in relation to time of the laying season (c), and
day within the spring tide cycle (d). Circles represent mean number of nests initiated for each spring tide cycle (c) or each day of the spring tide
cycle (d). The lines at the top of the panels indicate Kernel-densities. N = 776 days from ten laying seasons encompassing 62 semi-lunar spring
tide cycles. a-d, Circle size indicates the number of initiated nests in the particular spring tide cycle (a, c) or day (b, d). The lines and the shaded
areas represent model predictions with 95% CI based on posterior distributions of 5000 simulated values generated from ‘simple Gaussian model’
outputs (Tables 1 and 2) using the ‘sim’ function in R [45] while keeping the other predictors constant. Note that in (a, b) the 7th semi-lunar cycle
contained only two data-points and hence these were modeled as the 6th cycle
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Given that high spring tides and the start of the rain
season will terminate the laying season in early July, late
nesting plovers might be pressed for time and could be
forced to deviate from adaptive semi-lunar timing, so
the semi-lunar periodicity of nest initiation should get
weaker over the season. Contrary to our prediction and
despite our large sample of more than 700 nests the
interaction between spring tide cycle number and nest
initiation rates during the semi-lunar cycle was weak
and not clearly supported in our models. However, we
note that the observed weak trend was consistent with
our prediction, i.e. nest initiation rates seemed to show a
stronger adherence to the semi-lunar cycle and tide
height at the beginning of the season whereas there was
no such a relationship at the end of the season (Table 2).
Temporal adaptation in response to nest flooding has

been previously dismissed as unlikely mechanism in
some temperate coastal birds [19]. Indeed, nest flooding
through tides, despite being the second most important
reason for nest failure after predation [14], was respon-
sible for only a small proportion of nest failures in our
population. Moreover, despite data on 752 nests col-
lected over 10 years, the semi-lunar periodicity of nest
initiation in our Snowy Plover population was only mod-
erate. There might be methodological and biological rea-
sons for such a weak relationship, and we discuss six in
detail. First, we did not measure tide height at the site
(or at each nest) but instead relied on predicted tide
heights for a station located about 95 km away. Second,
for the majority of nests, the true nest initiation date
was estimated based on categorical egg floating charts
assuming a generic rate for the egg laying period. Third,
plovers might choose more flood-safe nest locations es-
pecially when they initiate nests at lower tides. However,
choosing nest locations that are safe from flooding can
compromise nest survival in other ways [17, 20], e.g. by
providing inferior conditions for the hatchlings leading
to increased chick mortality [14, 22] or via increased risk
of nest predation [52–56]. Predation risk may therefore
be traded off with the risk of flooding, as flood-safe nests
that are further away from the shoreline or more ele-
vated might be more vulnerable to predation [21, 23].
Indeed, Snowy Plovers nesting on artificial nest mounds
were more likely to survive extreme weather events, yet
it is unclear whether such nests were also more prone to
predation [32]. Fourth, phenotypic plasticity may enable
inhabitants of tidal wetlands to adapt to nest flooding
but previous studies suggested that not all species are
able to do so. For example, Oystercatchers Haematopus
ostralegus chose seemingly more elevated nest sites after
experiencing nest flooding but when tested formally it
turned out that their nest site selection was not different
from random [20]. In contrast, female Saltmarsh Spar-
rows Ammospiza caudacutus that experienced nest

flooding built their replacement clutches more elevated
in vegetation than expected by chance [21]. Fifth, par-
ents may be able to reduce the exposure of their nests to
spring tides by shortening the incubation period. This
can be achieved by increasing the nest temperature, for
example, by higher nest attendance [57, 58]. Higher am-
bient temperatures later in the breeding season may also
contribute to shorter incubation times, e.g. as seen in
late nests of Snowy Plovers in California [27], as these
late nests then experience more favourable thermal con-
ditions than early nests when unattended. Too high am-
bient temperatures can eventually become a threat for
the developing embryos although parents can mitigate
this threat by increasing nest attendance and shading the
eggs [34, 59]. A shorter nest period by approximately
three days would help to avoid the exposure of the im-
mobile clutch to a second spring tide if the nests are ini-
tiated right after spring tide. Finally, further cues and
pressures might be more important drivers of nest initi-
ation than the time within the spring tide cycle. For ex-
ample, females may align their reproductive physiology
and nest initiation to the availability of partners [60, 61],
use certain social cues such as the sight of successful
broods [62, 63] or the nesting activity of conspecific or
heterospecific females such as Least Tern Sternulla
antillarum that nest nearby [36, 64].

Conclusions
We conclude that the temporal patterns of nest initi-
ation and flooding observed in Snowy Plovers are con-
sistent with adaptation required for successful breeding
in intertidal habitats. We note that similar to other
coastal birds the nesting season coincides with the low-
est spring tides of the annual cycle [19], and overall only
a small proportion of nests were flooded. The associa-
tions of nest initiation rates and flooding with
semi-lunar tidal cycles were moderate, and detection re-
quired large sample sizes suggesting that there are other
adaptive mechanisms contributing to reduce nest failure
due to tidal flooding. Yet, an adaptive mechanism relying
on timing in regard to the spring tides should be less
costly than choosing nesting sites that are more elevated
(hence more exposed to predators) and/or further away
from preferred feeding habitat. Plovers seem well
adapted to the threat of nest flooding that occurs in tidal
wetlands. Understanding how birds adapt to nest flood-
ing is essential, especially given that global environmen-
tal changes are predicted to increase volatility of climate
and the occurrence of extreme climatic events, leading
to more flooding [37, 65]. Regular occurring cyclones
are important for Snowy Plovers since they create the
preferred nesting habitat [66]. Yet, fewer but more ex-
treme storms and sea-level rise are predicted to increase
the vulnerability of coastal populations because elevated
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storm tides will increase nest flooding [19], and further
reduce the available habitat for intertidal specialists such
as Snowy Plovers [66, 67]. We call for further studies on
the significance of timing of nest initiation, preferably to
test the generality of adaptive nest initiation in response
to spring tides in coastal birds.
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